1,037 research outputs found
A laboratory method for precisely determining the micro-volume-magnitudes of liquid efflux
Micro-volumetric quantities of ejected liquid are made to produce equal volumetric displacements of a more dense material. Weight measurements are obtained on the displaced heavier liquid and used to calculate volumes based upon the known density of the heavy medium
Orientability and energy minimization in liquid crystal models
Uniaxial nematic liquid crystals are modelled in the Oseen-Frank theory
through a unit vector field . This theory has the apparent drawback that it
does not respect the head-to-tail symmetry in which should be equivalent to
-. This symmetry is preserved in the constrained Landau-de Gennes theory
that works with the tensor .We study
the differences and the overlaps between the two theories. These depend on the
regularity class used as well as on the topology of the underlying domain. We
show that for simply-connected domains and in the natural energy class
the two theories coincide, but otherwise there can be differences
between the two theories, which we identify. In the case of planar domains we
completely characterise the instances in which the predictions of the
constrained Landau-de Gennes theory differ from those of the Oseen-Frank
theory
Ion measurements during Pioneer Venus reentry: Implications for solar cycle variation of ion composition and dynamics
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95616/1/grl7044.pd
Low Energy Electron Point Projection Microscopy of Suspended Graphene, the Ultimate "Microscope Slide"
Point Projection Microscopy (PPM) is used to image suspended graphene using
low-energy electrons (100-200eV). Because of the low energies used, the
graphene is neither damaged or contaminated by the electron beam. The
transparency of graphene is measured to be 74%, equivalent to electron
transmission through a sheet as thick as twice the covalent radius of
sp^2-bonded carbon. Also observed is rippling in the structure of the suspended
graphene, with a wavelength of approximately 26 nm. The interference of the
electron beam due to the diffraction off the edge of a graphene knife edge is
observed and used to calculate a virtual source size of 4.7 +/- 0.6 Angstroms
for the electron emitter. It is demonstrated that graphene can be used as both
anode and substrate in PPM in order to avoid distortions due to strong field
gradients around nano-scale objects. Graphene can be used to image objects
suspended on the sheet using PPM, and in the future, electron holography
Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes
Protein-DNA complexes with loops play a fundamental role in a wide variety of
cellular processes, ranging from the regulation of DNA transcription to
telomere maintenance. As ubiquitous as they are, their precise in vivo
properties and their integration into the cellular function still remain
largely unexplored. Here, we present a multilevel approach that efficiently
connects in both directions molecular properties with cell physiology and use
it to characterize the molecular properties of the looped DNA-lac repressor
complex while functioning in vivo. The properties we uncover include the
presence of two representative conformations of the complex, the stabilization
of one conformation by DNA architectural proteins, and precise values of the
underlying twisting elastic constants and bending free energies. Incorporation
of all this molecular information into gene-regulation models reveals an
unprecedented versatility of looped DNA-protein complexes at shaping the
properties of gene expression.Comment: Open Access article available at
http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035
Signaling in Secret: Pay-for-Performance and the Incentive and Sorting Effects of Pay Secrecy
Key Findings: Pay secrecy adversely impacts individual task performance because it weakens the perception that an increase in performance will be accompanied by increase in pay; Pay secrecy is associated with a decrease in employee performance and retention in pay-for-performance systems, which measure performance using relative (i.e., peer-ranked) criteria rather than an absolute scale (see Figure 2 on page 5); High performing employees tend to be most sensitive to negative pay-for- performance perceptions; There are many signals embedded within HR policies and practices, which can influence employeesâ perception of workplace uncertainty/inequity and impact their performance and turnover intentions; and When pay transparency is impractical, organizations may benefit from introducing partial pay openness to mitigate these effects on employee performance and retention
Classical Fields Near Thermal Equilibrium
We discuss the classical limit for the long-distance (``soft'') modes of a
quantum field when the hard modes of the field are in thermal equilibrium. We
address the question of the correct semiclassical dynamics when a momentum
cut-off is introduced. Higher order contributions leads to a stochastic
interpretation for the effective action in analogy to Quantum Brownian Motion,
resulting in dissipation and decoherence for the evolution of the soft modes.
Particular emphasis is put on the understanding of dissipation. Our discussion
focuses mostly on scalar fields, but we make some remarks on the extension to
gauge theories.Comment: REVTeX, 6 figure
Magnetic fields & rotation periods of M dwarfs from SPIRou spectra
We present near-infrared spectropolarimetric observations of a sample of 43
weakly- to moderately-active M dwarfs, carried with SPIRou at the
Canada-France-Hawaii Telescope in the framework of the SPIRou Legacy Survey
from early 2019 to mid 2022. We use the 6700 circularly polarised spectra
collected for this sample to investigate the longitudinal magnetic field and
its temporal variations for all sample stars, from which we diagnose, through
quasi-periodic Gaussian process regression, the periodic modulation and
longer-term fluctuations of the longitudinal field. We detect the large-scale
field for 40 of our 43 sample stars, and infer a reliable or tentative rotation
period for 38 of them, using a Bayesian framework to diagnose the confidence
level at which each rotation period is detected. We find rotation periods
ranging from 14 to over 60d for the early-M dwarfs, and from 70 to 200d for
most mid- and late-M dwarfs (potentially up to 430d for one of them). We also
find that the strength of the detected large-scale fields does not decrease
with increasing period or Rossby number for the slowly rotating dwarfs of our
sample as it does for higher-mass, more active stars, suggesting that these
magnetic fields may be generated through a different dynamo regime than those
of more rapidly rotating stars. We also show that the large-scale fields of
most sample stars evolve on long timescales, with some of them globally
switching sign as stars progress on their putative magnetic cycles.Comment: MNRAS, in press (25 pages, 15 figures, 3 tables
Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath
We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two-dimensional hybrid-Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast-mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift-like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time-energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath.Peer reviewe
Chloroplast DNA variation of Carapa guianensis in the Amazon basin.
Carapa guianensis is a widespread Neotropical tree species that produces a seed adapted for water dispersal. We conducted a pilot study of chloroplast DNA (cpDNA) variation in order to investigate the consequences of hydrochory on genetic diversity and geographic population structure in the lower Amazon basin. A survey of cpDNA haplotype variation reveals a strong regional structure, which suggests limited gene flow by seeds. Within site variation was detected only in one floodplain forest (varzea), suggesting that seed dispersal by water in these forests has the potential to mix maternal lineages. Several phylogeographic hypotheses are discussed with respect to these data
- âŠ