279 research outputs found

    Avoiding Aliasing in Allan Variance: an Application to Fiber Link Data Analysis

    Get PDF
    Optical fiber links are known as the most performing tools to transfer ultrastable frequency reference signals. However, these signals are affected by phase noise up to bandwidths of several kilohertz and a careful data processing strategy is required to properly estimate the uncertainty. This aspect is often overlooked and a number of approaches have been proposed to implicitly deal with it. Here, we face this issue in terms of aliasing and show how typical tools of signal analysis can be adapted to the evaluation of optical fiber links performance. In this way, it is possible to use the Allan variance as estimator of stability and there is no need to introduce other estimators. The general rules we derive can be extended to all optical links. As an example, we apply this method to the experimental data we obtained on a 1284 km coherent optical link for frequency dissemination, which we realized in Italy

    A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    Get PDF
    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about (10-8 rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical fiber sensors

    Distributed Raman optical amplification in phase coherent transfer of optical frequencies

    Full text link
    We describe the application of Raman Optical-fiber Amplification (ROA) for the phase coherent transfer of optical frequencies in an optical fiber link. ROA uses the transmission fiber itself as a gain medium for bi-directional coherent amplification. In a test setup we evaluated the ROA in terms of on-off gain, signal-to-noise ratio, and phase noise added to the carrier. We transferred a laser frequency in a 200 km optical fiber link with an additional 16 dB fixed attenuator (equivalent to 275 km of fiber on a single span), and evaluated both co-propagating and counter-propagating amplification pump schemes, demonstrating nonlinear effects limiting the co-propagating pump configuration. The frequency at the remote end has a fractional frequency instability of 3e-19 over 1000 s with the optical fiber link noise compensation

    Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network

    Full text link
    We performed a two-way remote optical phase comparison on optical fiber. Two optical frequency signals were launched in opposite directions in an optical fiber and their phases were simultaneously measured at the other end. In this technique, the fiber noise was passively cancelled, and we compared two optical frequencies at the ultimate 1E-21 stability level. The experiment was performed on a 47 km fiber that is part of the metropolitan network for Internet traffic. The technique relies on the synchronous measurement of the optical phases at the two ends of the link, that is made possible by the use of digital electronics. This scheme offers several advantages with respect to active noise cancellation, and can be upgraded to perform more complex tasks

    Absolute frequency measurement of the 1S0 - 3P0 transition of 171Yb

    Get PDF
    We report the absolute frequency measurement of the unperturbed transition 1S0 - 3P0 at 578 nm in 171Yb realized in an optical lattice frequency standard. The absolute frequency is measured 518 295 836 590 863.55(28) Hz relative to a cryogenic caesium fountain with a fractional uncertainty of 5.4x10-16 . This value is in agreement with the ytterbium frequency recommended as a secondary representation of the second in the International System of Units.Comment: This is an author-created, un-copyedited version of an article accepted for publication/published in Metrologia. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/1681-7575/aa4e62. It is published under a CC BY licenc

    Synthetic dimensions and spin-orbit coupling with an optical clock transition

    Get PDF
    We demonstrate a novel way of synthesizing spin-orbit interactions in ultracold quantum gases, based on a single-photon optical clock transition coupling two long-lived electronic states of two-electron 173^{173}Yb atoms. By mapping the electronic states onto effective sites along a synthetic "electronic" dimension, we have engineered synthetic fermionic ladders with tunable magnetic fluxes. We have detected the spin-orbit coupling with fiber-link-enhanced clock spectroscopy and directly measured the emergence of chiral edge currents, probing them as a function of the magnetic field flux. These results open new directions for the investigation of topological states of matter with ultracold atomic gases.Comment: Minor changes with respect to v1 (we have corrected some typos, fixed the use of some mathematical symbols, added one reference

    Beyond the fundamental noise limit in coherent optical fiber links

    Get PDF
    It is well known that temperature variations and acoustic noise affect ultrastable frequency dissemination along optical fiber. Active stabilization techniques are in general adopted to compensate for the fiber-induced phase noise. However, despite this compensation, the ultimate link performances remain limited by the so called delay-unsuppressed fiber noise that is related to the propagation delay of the light in the fiber. In this paper, we demonstrate a data post-processing approach which enables us to overcome this limit. We implement a subtraction algorithm between the optical signal delivered at the remote link end and the round-trip signal. In this way, a 6 dB improvement beyond the fundamental limit imposed by delay-unsuppressed noise is obtained. This result enhances the resolution of possible comparisons between remote optical clocks by a factor of 2. We confirm the theoretical prediction with experimental data obtained on a 47 km metropolitan fiber link, and propose how to extend this method for frequency dissemination purposes as well

    Spectral purity transfer with 5 Ɨ 10āˆ’17 instability at 1 s using a multibranch Er:fiber frequency comb

    Get PDF
    In this work we describe the spectral purity transfer between a 1156 nm ultrastable laser and a 1542 nm diode laser by means of an Er:fiber multibranch comb. By using both the master laser light at 1156 nm and its second-harmonic at 578 nm, together with the 1542 nm slave laser, we investigate the residual noise between the main comb output, the octave-spanning output, and a wavelength conversion module including non-linear fibers, second-harmonic generation crystal and amplifiers. With an ultimate stability of the system at the level of 5Eāˆ’17 at 1 s and accuracy of 3Eāˆ’19, this configuration can sustain spectral transfer at the level required by the contemporary optical clocks with a simple and robust setup
    • ā€¦
    corecore