71 research outputs found
Intertwining personal and reward relevance: evidence from the drift-diffusion model.
In their seminal paper 'Is our self nothing but reward', Northoff and Hayes (Biol Psychiatry 69(11):1019-1025, Northoff, Hayes, Biological Psychiatry 69(11):1019-1025, 2011) proposed three models of the relationship between self and reward and opened a continuing debate about how these different fields can be linked. To date, none of the proposed models received strong empirical support. The present study tested common and distinct effects of personal relevance and reward values by de-componenting different stages of perceptual decision making using a drift-diffusion approach. We employed a recently developed associative matching paradigm where participants (N = 40) formed mental associations between five geometric shapes and five labels referring personal relevance in the personal task, or five shape-label pairings with different reward values in the reward task and then performed a matching task by indicating whether a displayed shape-label pairing was correct or incorrect. We found that common effects of personal relevance and monetary reward were manifested in the facilitation of behavioural performance for high personal relevance and high reward value as socially important signals. The differential effects between personal and monetary relevance reflected non-decisional time in a perceptual decision process, and task-specific prioritization of stimuli. Our findings support the parallel processing model (Northoff & Hayes, Biol Psychiatry 69(11):1019-1025, Northoff, Hayes, Biological Psychiatry 69(11):1019-1025, 2011) and suggest that self-specific processing occurs in parallel with high reward processing. Limitations and further directions are discussed
Translating upwards: linking the neural and social sciences via neuroeconomics
The social and neural sciences share a common interest in understanding
the mechanisms that underlie human behaviour. However, interactions between
neuroscience and social science disciplines remain strikingly narrow and tenuous.
We illustrate the scope and challenges for such interactions using the paradigmatic
example of neuroeconomics. Using quantitative analyses of both its scientific
literature and the social networks in its intellectual community, we show that
neuroeconomics now reflects a true disciplinary integration, such that research
topics and scientific communities with interdisciplinary span exert greater
influence on the field. However, our analyses also reveal key structural and
intellectual challenges in balancing the goals of neuroscience with those of the
social sciences. To address these challenges, we offer a set of prescriptive
recommendations for directing future research in neuroeconomics
Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI
Current computational accounts posit that, in simple binary choices, humans accumulate
evidence in favour of the different alternatives before committing to a decision. Neural
correlates of this accumulating activity have been found during perceptual decisions in
parietal and prefrontal cortex; however the source of such activity in value-based choices
remains unknown. Here we use simultaneous EEG–fMRI and computational modelling to
identify EEG signals reflecting an accumulation process and demonstrate that the within- and
across-trial variability in these signals explains fMRI responses in posterior-medial frontal
cortex. Consistent with its role in integrating the evidence prior to reaching a decision, this
region also exhibits task-dependent coupling with the ventromedial prefrontal cortex and
the striatum, brain areas known to encode the subjective value of the decision alternatives.
These results further endorse the proposition of an evidence accumulation process
during value-based decisions in humans and implicate the posterior-medial frontal cortex in
this process
Adiposity is Associated with Regional Cortical Thinning
BACKGROUND: Although obesity is associated with structural changes in brain grey matter, findings have been inconsistent and the precise nature of these changes is unclear. Inconsistencies may partly be due to the use of different volumetric morphometry methods, and the inclusion of participants with comorbidities that exert independent effects on brain structure. The latter concern is particularly critical when sample sizes are modest. The purpose of the current study was to examine the relationship between cortical grey matter and body mass index (BMI), in healthy participants, excluding confounding comorbidities and using a large sample size. SUBJECTS: A total of 202 self-reported healthy volunteers were studied using surface-based morphometry, which permits the measurement of cortical thickness, surface area and cortical folding, independent of each other. RESULTS: Although increasing BMI was not associated with global cortical changes, a more precise, region-based analysis revealed significant thinning of the cortex in two areas: left lateral occipital cortex (LOC) and right ventromedial prefrontal cortex (vmPFC). An analogous region-based analysis failed to find an association between BMI and regional surface area or folding. Participants' age was also found to be negatively associated with cortical thickness of several brain regions; however, there was no overlap between the age- and BMI-related effects on cortical thinning. CONCLUSIONS: Our data suggest that the key effect of increasing BMI on cortical grey matter is a focal thinning in the left LOC and right vmPFC. Consistent implications of the latter region in reward valuation, and goal control of decision and action suggest a possible shift in these processes with increasing BMI.We thank all the participants and the staff of the Wolfson Brain Imaging Centre. This work was supported by the Bernard Wolfe Health Neuroscience Fund (NM, HZ, ISF, PCF), the Wellcome Trust (RGAG/144 to N.M, RGAG/188 to ISF, RNAG/259 to PCF) and the Medical Research Council (G0701497 to KDE).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ijo.2016.42
Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance
BACKGROUND. Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. METHODOLOGY/PRINCIPAL FINDINGS. Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. CONCLUSIONS/SIGNIFICANCE. These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness).National Institute on Drug Abuse (14118, 026002, 026104, DABK39-03-0098, DABK39-03-C-0098); The MGH Phenotype Genotype Project in Addiction and Mood Disorder from the Office of National Drug Control Policy - Counterdrug Technology Assessment Center; MGH Department of Radiology; the National Center for Research Resources (P41RR14075); National Institute of Neurological Disorders and Stroke (34189, 05236
Led into Temptation? Rewarding Brand Logos Bias the Neural Encoding of Incidental Economic Decisions
Human decision-making is driven by subjective values assigned to alternative choice options. These valuations are based on reward cues. It is unknown, however, whether complex reward cues, such as brand logos, may bias the neural encoding of subjective value in unrelated decisions. In this functional magnetic resonance imaging (fMRI) study, we subliminally presented brand logos preceding intertemporal choices. We demonstrated that priming biased participants' preferences towards more immediate rewards in the subsequent temporal discounting task. This was associated with modulations of the neural encoding of subjective values of choice options in a network of brain regions, including but not restricted to medial prefrontal cortex. Our findings demonstrate the general susceptibility of the human decision making system to apparently incidental contextual information. We conclude that the brain incorporates seemingly unrelated value information that modifies decision making outside the decision-maker's awareness
A causal account of the brain network computations underlying strategic social behavior
During competitive interactions, humans have to estimate the impact of their own actions on their opponent's strategy. Here we provide evidence that neural computations in the right temporoparietal junction (rTPJ) and interconnected structures are causally involved in this process. By combining inhibitory continuous theta-burst transcranial magnetic stimulation with model-based functional MRI, we show that disrupting neural excitability in the rTPJ reduces behavioral and neural indices of mentalizing-related computations, as well as functional connectivity of the rTPJ with ventral and dorsal parts of the medial prefrontal cortex. These results provide a causal demonstration that neural computations instantiated in the rTPJ are neurobiological prerequisites for the ability to integrate opponent beliefs into strategic choice, through system-level interaction within the valuation and mentalizing networks
On pandemics and pivots: A COVID-19 reflection on envisioning the future of medical education
The required adjustments precipitated by the coronavirus disease 2019 crisis have been challenging, but also represent a critical opportunity for the evolution and potential disruptive and constructive change of medical education. Given that the format of medical education is not fixed, but malleable and in fact must be adaptable to societal needs through ongoing reflexivity, we find ourselves in a potentially transformative learning phase for the field. An Association for Medical Education in Europe ASPIRE Academy group of 18 medical educators from seven countries was formed to consider this opportunity, and identified critical questions for collective reflection on current medical education practices and assumptions, with the attendant challenge to envision the future of medical education. This was achieved through online discussion as well as asynchronous collective reflections by group members. Four major themes and related conclusions arose from this conversation: Why we teach: the humanitarian mission of medicine should be reinforced; what we teach: disaster management, social accountability and embracing an environment of complexity and uncertainty should be the core; how we teach: open pathways to lean medical education and learning by developing learners embedded in a community context; and whom we teach: those willing to take professional responsibility. These collective reflections provide neither fully matured digests of the challenges of our field, nor comprehensive solutions; rather they are offered as a starting point for medical schools to consider as we seek to harness the learning opportunities stimulated by the pandemic
- …