9,440 research outputs found
Stress redistribution due to creep in nimonic 90 ministry of aviation contract no. PD/28/021 report for the period January 1964 - June 1965: part 1
The period covered by this report has been devoted to the design,
construction development and calibration of a special apparatus to simulate
the stress redistribution conditions occurring during the creep of a cooled
turbine blade. The experimental assembly consists of two creep machines,
each operating at a different temperature, so controlled that a load is
shared between them. maintaining equal creep strains (and in consequence
equal creep rates) in each specimen. The stress in each specimen and the
creep strain of the pair are automatically measured and recorded by a
specially developed unit. Some preliminary results on an aluminium alloy
are presented
An obstruction based approach to the Kochen-Specker theorem
In [1] it was shown that the Kochen Specker theorem can be written in terms
of the non-existence of global elements of a certain varying set over the
partially ordered set of boolean subalgebras of projection operators on some
Hilbert space. In this paper, we show how obstructions to the construction of
such global elements arise, and how this provides a new way of looking at
proofs of the theorem.Comment: 14 pages, 6 figure
Aircraft electromagnetic compatibility
Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting
S-Nitrosoglutathione reduces asymptomatic embolization after carotid angioplasty
Background: The major complication of carotid angioplasty is embolic stroke, which may occur after balloon inflation and deflation or in the early postintervention period. Platelet adhesion and aggregation to the angioplasty site with subsequent embolization seems to plays a major role in early postangioplasty embolization and stroke. During this period, asymptomatic embolic signals can be detected in patients by transcranial Doppler ultrasound despite aspirin and heparin treatment. S-Nitrosoglutathione (GSNO) is a nitric oxide donor that appears to have relative platelet specificity. We evaluated its effectiveness in reducing embolization after carotid angioplasty.
Methods and results: Sixteen patients undergoing carotid angioplasty and stenting for symptomatic 70% internal carotid artery stenosis were randomized in a double-blind manner to GSNO or placebo given after surgery for 90 minutes. All patients were pretreated with aspirin and given heparin for 24 hours after the procedure. Transcranial Doppler recordings were made from the ipsilateral middle cerebral artery for 1 hour before treatment and at 0 to 3, 6, and 24 hours after treatment. GSNO resulted in a rapid reduction in the frequency of embolic signals of 95% at 0 to 3 hours and 100% at 6 hours (P=0.007 and P=0.01 versus placebo, respectively). In the placebo group, 2 patients experienced ipsilateral stroke after the angioplasty. No cerebrovascular events occurred in the GSNO group.
Conclusions: S-Nitrosoglutathione was highly effective in rapidly reducing the frequency of embolic signals after endovascular treatment for symptomatic high-grade carotid stenosis
Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics
Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics
Volume Weighted Measures of Eternal Inflation in the Bousso-Polchinski Landscape
We consider the cosmological dynamics associated with volume weighted
measures of eternal inflation, in the Bousso-Polchinski model of the string
theory landscape. We find that this measure predicts that observers are most
likely to find themselves in low energy vacua with one flux considerably larger
than the rest. Furthermore, it allows for a satisfactory anthropic explanation
of the cosmological constant problem by producing a smooth, and approximately
constant, distribution of potentially observable values of Lambda. The low
energy vacua selected by this measure are often short lived. If we require
anthropically acceptable vacua to have a minimum life-time of 10 billion years,
then for reasonable parameters a typical observer should expect their vacuum to
have a life-time of approximately 12 billion years. This prediction is model
dependent, but may point toward a solution to the coincidence problem of
cosmology.Comment: 35 pages, 8 figure
- …
