21 research outputs found

    Direct Inhibition of GSK3β by the Phosphorylated Cytoplasmic Domain of LRP6 in Wnt/β-Catenin Signaling

    Get PDF
    Wnt/β-catenin signaling plays a central role in development and is also involved in a diverse array of diseases. Binding of Wnts to the coreceptors Frizzled and LRP6/5 leads to phosphorylation of PPPSPxS motifs in the LRP6/5 intracellular region and the inhibition of GSK3β bound to the scaffold protein Axin. However, it remains unknown how GSK3β is specifically inhibited upon Wnt stimulation. Here, we show that overexpression of the intracellular region of LRP6 containing a Ser/Thr rich cluster and a PPPSPxS motif impairs the activity of GSK3β in cells. Synthetic peptides containing the PPPSPxS motif strongly inhibit GSK3β in vitro only when they are phosphorylated. Microinjection of these peptides into Xenopus embryos confirms that the phosphorylated PPPSPxS motif potentiates Wnt-induced second body axis formation. In addition, we show that the Ser/Thr rich cluster of LRP6 plays an important role in LRP6 binding to GSK3β. These observations demonstrate that phosphorylated LRP6/5 both recruits and directly inhibits GSK3β using two distinct portions of its cytoplasmic sequence, and suggest a novel mechanism of activation in this signaling pathway

    Virology under the microscope—a call for rational discourse

    Get PDF
    Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns – conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we – a broad group of working virologists – seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology

    T4I2016 - James, Abi; Cliffe , Emma; Dyer, Jennifer : STEM Enable: improving STEM accessibility through knowledge sharing

    No full text
    <p>James, Abi; Cliffe , Emma; Dyer, Jennifer : STEM Enable: improving STEM accessibility through knowledge sharing. <i>T4I Communications 1, T4I2016 – Knowledge Transfer</i>, Nov 2016. <i>Figshare</i>.</p> <p>This session will briefly introduce Science, Technology, Engineering and Mathematics (STEM) accessibility issues before considering the potential impact of crowd-sourcing Assistive Technology (AT) knowledge on professional skills and the development of new technologies in other AT fields.</p

    A frontal code for the solution of sparse positive-definite symmetric systems arising from finite-element applications

    No full text
    We describe the design, implementation, and performance of a frontal code for the solution of large sparse symmetric systems of linear finite-element equations. The code is intended primarily for positive-definite systems, since numerical pivoting is not performed. The resulting software package, MA62, will be included in the Harwell Subroutine Library. We illustrate the performance of our new code on a range of problems arising from real engineering and industrial applications. The performance of the code is compared with that of the Harwell Subroutine Library general frontal solver MA42 and with other positive-definite codes from the Harwell Subroutine Library

    IL-4Ralpha-associated antigen processing by B cells promotes immunity in Nippostrongylus brasiliensis infection.

    Get PDF
    In this study, B cell function in protective T(H)2 immunity against N. brasiliensis infection was investigated. Protection against secondary infection depended on IL-4Ralpha and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Ralpha(-)/(-) mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Ralpha expressing B cells into naive BALB/c mice, but not IL-4Ralpha or IL-13 deficient B cells, conferred protection against primary N. brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4(+) T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88(-)/(-) B cells. These data suggest TLR dependent antigen processing by IL-4Ralpha-responsive B cells producing IL-13 contribute significantly to CD4(+) T cell-mediated protective immunity against N. brasiliensis infection

    Mutations in the gene encoding the PML nuclear body protein Sp110 are associated with immunodeficiency and hepatic veno-occlusive disease

    No full text
    We describe mutations in the PML nuclear body protein Sp110 in the syndrome veno-occlusive disease with immunodeficiency, an autosomal recessive disorder of severe hypogammaglobulinemia, combined T and B cell immunodeficiency, absent lymph node germinal centers, absent tissue plasma cells and hepatic veno-occlusive disease. This is the first report of the involvement of a nuclear body protein in a human primary immunodeficiency and of high-penetrance genetic mutations in hepatic veno-occlusive disease.3 page(s
    corecore