532 research outputs found

    Optical position measurement for a large gap magnetic suspension system: Design and performance analysis

    Get PDF
    An optical measurement system (OMS) has been designed and tested for a large gap magnetic suspension system (LGMSS). The LGMSS will be used to study control laws for magnetic suspension systems for vibration isolation and pointing applications. The LGMSS features six degrees of freedom and consists of a planar array of electromagnets that levitate and position a cylindrical element containing a permanent magnet core. The OMS provides information on the location and orientation of the element to the LGMSS control system to stabilize suspension. The hardware design of this optical sensing system and the tracking algorithms are presented. The results of analyses and experiments are presented that define the accuracy limits of the optical sensing system and that quantify the errors in position estimation

    Van Allen Probes observations of direct wave-particle interactions

    Get PDF
    Abstract Quasiperiodic increases, or bursts, of 17-26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75-80°, while fluxes at 90° and \u3c60° remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and were observed by both Van Allen Probes. Density, cyclotron frequency, and pitch angle of the peak flux were used to estimate resonant electron energy. The result of ∼15-35 keV is consistent with the energies of the electrons showing the flux enhancements and corresponds to electrons in and above the steep flux gradient that signals the presence of an Alfvén boundary in the plasma. The cause of the quasiperiodic nature (on the order of a few minutes) of the bursts is not understood at this time

    The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

    Get PDF
    Abstract The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth’s magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly’s Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to \u3e0.5 MeV (with capabilities to measure up to \u3e1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to \u3e0.5 MeV, and also measures total ion energy distributions from 45 keV to \u3e0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth’s magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth’s magnetotail during the about 6 months that comprise orbital phase 2

    Insulin-Like Growth Factor (IGF) Binding Protein 2 Functions Coordinately with Receptor Protein Tyrosine Phosphatase and the IGF-I Receptor To Regulate IGF-I-Stimulated Signaling

    Get PDF
    Insulin-like growth factor I (IGF-I) is a mitogen for vascular smooth muscle cells (VSMC) and has been implicated in the development and progression of atherosclerosis. IGF binding proteins (IGFBPs) modify IGF-I actions independently of IGF binding, but a receptor-based mechanism by which they function has not been elucidated. We investigated the role of IGFBP-2 and receptor protein tyrosine phosphatase β (RPTPβ) in regulating IGF-I signaling and cellular proliferation. IGFBP-2 bound RPTPβ, which led to its dimerization and inactivation. This enhanced PTEN tyrosine phosphorylation and inhibited PTEN activity. Utilization of substrate trapping and phosphatase-dead mutants showed that RPTPβ bound specifically to PTEN and dephosphorylated it. IGFBP-2 knockdown led to decreased PTEN tyrosine phosphorylation and decreased AKT Ser473 activation. IGFBP-2 enhanced IGF-I-stimulated VSMC migration and proliferation. Analysis of aortas obtained from IGFBP-2−/− mice showed that RPTPβ was activated, and this was associated with inhibition of IGF-I stimulated AKT Ser473 phosphorylation and VSMC proliferation. These changes were rescued following administration of IGFBP-2. These findings present a novel mechanism for coordinate regulation of IGFBP-2 and IGF-I signaling functions that lead to stimulation of VSMC proliferation. The results have important implications for understanding how IGFBPs modulate the cellular response to IGF-I

    An Overview of Observations of Unstable Layers during the Turbulent Oxygen Mixing Experiment (TOMEX)

    Get PDF
    The Turbulent Oxygen Mixing Experiment (TOMEX) was designed to measure the atmospheric response to the existence of unstable layers as determined by wind and temperature measurements from 80 to 105 km. TOMEX combined Na lidar measurements, from Starfire Optical Range in Albuquerque, New Mexico, with a launch of a payload from White Sands Missile Range, located between 100 and 150 km south of Starfire. The payload included a trimethyl aluminum chemical release to measure winds and diffusion, a 5-channel ionization gauge to measure neutral density fluctuations at high vertical resolution, and a 3-channel photometer experiment to measure atomic oxygen related airglow. The rocket was launched when the lidar data indicated the presence of convectively and dynamically unstable regions between 80 and 100 km altitude. For several hours prior to the launch, there had existed a large amplitude atmospheric gravity wave or tide which brought the background atmosphere into being nearly convectively unstable over the 85 to 95 km region. In addition a large overturning in Na density, possibly due to a convective roll, existed at altitudes around 100 km. This type of instability had not been previously seen and identified in this altitude region. The TOMEX payload measured the existence of Kelvin-Helmholz billows, enhanced neutral density fluctuations, enhanced energy dissipation, and well-mixed regions. These features were associated with convectively unstable regions, dynamically unstable regions, convective rolls, and the presence of this large wave. The unstable regions were persistent and covered large vertical (and horizontal regions) of the atmosphere. The atmospheric mixing and energy dissipation appeared to be largely determined by the presence and nature of these instabilities

    Social research on neglected diseases of poverty: Continuing and emerging themes

    Get PDF
    Copyright: © 2009 Manderson et al.Neglected tropical diseases (NTDs) exist and persist for social and economic reasons that enable the vectors and pathogens to take advantage of changes in the behavioral and physical environment. Persistent poverty at household, community, and national levels, and inequalities within and between sectors, contribute to the perpetuation and re-emergence of NTDs. Changes in production and habitat affect the physical environment, so that agricultural development, mining and forestry, rapid industrialization, and urbanization all result in changes in human uses of the environment, exposure to vectors, and vulnerability to infection. Concurrently, political instability and lack of resources limit the capacity of governments to manage environments, control disease transmission, and ensure an effective health system. Social, cultural, economic, and political factors interact and influence government capacity and individual willingness to reduce the risks of infection and transmission, and to recognize and treat disease. Understanding the dynamic interaction of diverse factors in varying contexts is a complex task, yet critical for successful health promotion, disease prevention, and disease control. Many of the research techniques and tools needed for this purpose are available in the applied social sciences. In this article we use this term broadly, and so include behavioral, population and economic social sciences, social and cultural epidemiology, and the multiple disciplines of public health, health services, and health policy and planning. These latter fields, informed by foundational social science theory and methods, include health promotion, health communication, and heath education

    Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon

    Get PDF
    The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d(-1) at days 2 and 3 of the culture, increasing to 66% d(-1) at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.Publisher PDFPeer reviewe

    IGF-I Bioactivity in an Elderly Population: Relation to Insulin Sensitivity, Insulin Levels, and the Metabolic Syndrome

    Get PDF
    OBJECTIVE - There is a complex relationship between IGF-I, IGF binding proteins, growth hormone, and insulin. The IGF-I kinase receptor activation assay (KIRA) is a novel method for measuring IGF-I bioactivity in human serum. We speculated that determination of IGF-I bioactivity might broaden our understanding of the IGF-I system in subjects with the metabolic syndrome. The purpose of our study was to investigate whether IGF-I bioactivity was related to insulin sensitivity and the metabolic syndrome. RESEARCH DESIGN AND METHODS - We conducted a cross-sectional study embedded in a random sample (1,036 elderly subjects) of a prospective population-based cohort study. IGF-I bioactivity was determined by the IGF-I KIRA. Categories of glucose (in)tolerance were defined by the 2003 American Diabetes Association criteria. Insulin sensitivity was assessed by homeostasis model assessment. The Adult Treatment Panel III definition of the metabolic syndrome was used. RESULTS - In subjects with normal fasting glucose and impaired fasting glucose, IGF-I bioactivity progressively increased with increasing insulin resistance, peaked at fasting glucose levels just below 7.0 mmol/l, and dropped at higher glucose levels. Mean IGF-I bioactivity peaked when three criteria of the metabolic syndrome were present and then declined significantly when five criteria of the metabolic syndrome were present. CONCLUSIONS - We observed that IGF-I bioactivity was related to insulin sensitivity, insulin levels, and the metabolic syndrome. Our study suggests that there exists an inverse U-shaped relationship between IGF-I bioactivity and number of components of the metabolic syndrome. This observation contrasts with previous results reporting an inverse relationship between total IGF-I and components of the metabolic syndrome

    A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-  nuclear translocation

    Get PDF
    Nocturnin (NOC) is a circadian-regulated protein related to the yeast family of transcription factors involved in the cellular response to nutrient status. In mammals, NOC functions as a deadenylase but lacks a transcriptional activation domain. It is highly expressed in bone-marrow stromal cells (BMSCs), hepatocytes, and adipocytes. In BMSCs exposed to the PPAR-γ (peroxisome proliferator-activated receptor-γ) agonist rosiglitazone, Noc expression was enhanced 30-fold. Previously, we reported that Noc−/− mice had low body temperature, were protected from diet-induced obesity, and most importantly exhibited absence of Pparg circadian rhythmicity on a high-fat diet. Consistent with its role in influencing BMSCs allocation, Noc−/− mice have reduced bone marrow adiposity and high bone mass. In that same vein, NOC overexpression enhances adipogenesis in 3T3-L1 cells but negatively regulates osteogenesis in MC3T3-E1 cells. NOC and a mutated form, which lacks deadenylase activity, bind to PPAR-γ and markedly enhance PPAR-γ transcriptional activity. Both WT and mutant NOC facilitate nuclear translocation of PPAR-γ. Importantly, NOC-mediated nuclear translocation of PPAR-γ is blocked by a short peptide fragment of NOC that inhibits its physical interaction with PPAR-γ. The inhibitory effect of this NOC-peptide was partially reversed by rosiglitazone, suggesting that effect of NOC on PPAR-γ nuclear translocation may be independent of ligand-mediated PPAR-γ activation. In sum, Noc plays a unique role in the regulation of mesenchymal stem-cell lineage allocation by modulating PPAR-γ activity through nuclear translocation. These data illustrate a unique mechanism whereby a nutrient-responsive gene influences BMSCs differentiation, adipogenesis, and ultimately body composition

    Expression of a protease-resistant insulin-like growth factor-binding protein-4 inhibits tumour growth in a murine model of breast cancer

    Get PDF
    BACKGROUND: Insulin-like growth factor 1 (IGF1) promotes breast cancer and disease progression. Bioavailability of IGF1 is modulated by IGF-binding proteins (IGFBPs). IGFBP4 inhibits IGF1 activity but cleavage by pregnancy-associated plasma protein-A (PAPP-A) protease releases active IGF1. METHODS: Expression of IGF pathway components and PAPP-A was assessed by western blot or RT-PCR. IGFBP4 (dBP4) resistant to PAPP-A cleavage, but retaining IGF-binding capacity, was used to block IGF activity in vivo. 4T1.2 mouse mammary adenocarcinoma cells transfected with empty vector, vector expressing wild-type IGFBP4 or vector expressing dBP4 were implanted in the mammary fat pad of BALB/c mice and tumour growth was assessed. Tumour angiogenesis and endothelial cell apoptosis were assessed by immunohistochemistry. RESULTS: 4T1.2 cells expressed the IGF1R receptor and IGFBP4. PAPP-A was expressed within mammary tumours but not by 4T1.2 cells. Proliferation and vascular endothelial growth factor (VEGF) production by 4T1.2 cells was increased by IGF1(E3R) (recombinant IGF1 resistant to binding by IGFBPs) but not by wild-type IGF1. IGF1-stimulated microvascular endothelial cell proliferation was blocked by recombinant IGFBP4. 4T1.2 tumours expressing dBP4 grew significantly more slowly than controls or tumours expressing wild-type IGFBP4. Inhibition of tumour growth by dBP4 was accompanied by the increased endothelial cell apoptosis. CONCLUSION: Protease-resistant IGFBP4 blocks IGF activity, tumour growth and angiogenesis
    corecore