642 research outputs found

    Spectroscopic Evidence That the Extreme Properties of IRAS F10214+4724 are due to Gravitational Lensing

    Get PDF
    The extreme bolometric luminosity of IRAS F10214+4724, and in particular the huge mass in molecular gas inferred from the CO line fluxes have led to suggestions that this is a giant galaxy in the process of formation. An arc-like structure and the closeness of a second object suggest, however, that gravitational lensing may be responsible for its anomalously high luminosity and mass. In this paper, we use an optical spectrum taken in conditions of 0.7-arcsec seeing to provide further evidence that F10214+4724 is a gravitationally lensed system. We measure tentative redshifts of 0.896 and 0.899 for galaxies projected 1\approx 1 and 3\approx 3 arcsec from IRAS F10214+4724 respectively. Identifying the former as the lensing galaxy we obtain a mass:light ratio consistent with those derived for other lenses, and find that its luminosity is consistent with the velocity dispersion deduced from the radius of the Einstein ring. If lensed, our models suggest magnification by a factor 10\sim 10, and hence an intrinsic bolometric luminosity for F10214+4724 similar to local ULIRGs.Comment: 5 pages, uuencoded compressed PostScript, 3 figures included. Accepted for publication in MNRAS pink pages; submitted 1 May 199

    Limits on the star formation rates of z>2 damped Ly-alpha systems from H-alpha spectroscopy

    Full text link
    We present the results of a long-slit K-band spectroscopic search with CGS4 on UKIRT for H-alpha emission from the objects responsible for high-redshift (z > 2) damped Ly-alpha absorption systems. The objective was to measure the star-formation rates in these systems. However, no H-alpha emission was detected above our 3-sigma limits of f < 10E-19 W/m**2, corresponding to star formation rates < 10 M_sun/yr/h**2 (q_0=0.5). These upper limits are more meaningful than those from searches for Ly-alpha emission because the H-alpha line is unaffected by resonant scattering. For q_0=0.5 our limits are in conflict with the star formation rates predicted under the assumption that the high-z DLAs are the fully-formed galactic-disk counterparts of today's massive spiral galaxies. Deeper spectroscopy is needed to test this picture for q_0=0.0. A programme of NICMOS imaging observations currently underway, combined with VLT spectroscopy, will provide a detailed picture of the link between DLAs and young galaxies.Comment: 5 pages, LaTex, includes 1 encapsulated postscript figure. To appear in the proceedings of the workshop on "NICMOS and the VLT: A New Era of High Resolution Near Infrared Imaging and Spectroscopy", held in Pula, Sardinia (26-27 May 1998), eds. Wolfram Freudling et al. Uses aspconf.sty and epsf.st

    The Canada-UK Deep Submillimetre Survey: The Survey of the 14-hour field

    Full text link
    We have used SCUBA to survey an area of 50 square arcmin, detecting 19 sources down to a 3sigma sensitivity limit of 3.5 mJy at 850 microns. We have used Monte-Carlo simulations to assess the effect of source confusion and noise on the SCUBA fluxes and positions, finding that the fluxes of sources in the SCUBA surveys are significantly biased upwards and that the fraction of the 850 micron background that has been resolved by SCUBA has been overestimated. The radio/submillmetre flux ratios imply that the dust in these galaxies is being heated by young stars rather than AGN. We have used simple evolution models based on our parallel SCUBA survey of the local universe to address the major questions about the SCUBA sources: (1) what fraction of the star formation at high redshift is hidden by dust? (2) Does the submillimetre luminosity density reach a maximum at some redshift? (3) If the SCUBA sources are proto-ellipticals, when exactly did ellipticals form? However, we show that the observations are not yet good enough for definitive answers to these questions. There are, for example, acceptable models in which 10 times as much high-redshift star formation is hidden by dust as is seen at optical wavelengths, but also acceptable ones in which the amount of hidden star formation is less than that seen optically. There are acceptable models in which very little star formation occurred before a redshift of three (as might be expected in models of hierarchical galaxy formation), but also ones in which 30% of the stars have formed by this redshift. The key to answering these questions are measurements of the dust temperatures and redshifts of the SCUBA sources.Comment: 41 pages (latex), 17 postscript figures, to appear in the November issue of the Astronomical Journa

    The Far-Infrared Surveyor (FIS) for AKARI

    Full text link
    The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky with high spatial resolution and redundancy. The actual scan width is more than eight arcmin, and the pixel pitch is matches the diffraction limit of the telescope. Derived point spread functions (PSFs) from observations of asteroids are similar to the optical model. Significant excesses, however, are clearly seen around tails of the PSFs, whose contributions are about 30% of the total power. All FIS functions are operating well in orbit, and its performance meets the laboratory characterizations, except for the two longer wavelength bands, which are not performing as well as characterized. Furthermore, the FIS has a spectroscopic capability using a Fourier transform spectrometer (FTS). Because the FTS takes advantage of the optics and detectors of the photometer, it can simultaneously make a spectral map. This paper summarizes the in-flight technical and operational performance of the FIS.Comment: 23 pages, 10 figures, and 2 tables. Accepted for publication in the AKARI special issue of the Publications of the Astronomical Society of Japa

    JINGLE V: Dust properties of nearby galaxies derived from hierarchical Bayesian SED fitting

    Get PDF
    We study the dust properties of 192 nearby galaxies from the JINGLE survey using photometric data in the 22-850μm range. We derive the total dust mass, temperature T and emissivity index β of the galaxies through the fitting of their spectral energy distribution (SED) using a single modified black-body model (SMBB). We apply a hierarchical Bayesian approach that reduces the known degeneracy between T and β. Applying the hierarchical approach, the strength of the T-β anti-correlation is reduced from a Pearson correlation coefficient R = -0.79 to R = -0.52. For the JINGLE galaxies we measure dust temperatures in the range 17 - 30 K and dust emissivity indices β in the range 0.6 - 2.2. We compare the SMBB model with the broken emissivity modified black-body (BMBB) and the two modified black-bodies (TMBB) models. The results derived with the SMBB and TMBB are in good agreement, thus applying the SMBB, which comes with fewer free parameters, does not penalize the measurement of the cold dust properties in the JINGLE sample. We investigate the relation between T and β and other global galaxy properties in the JINGLE and Herschel Reference Survey (HRS) sample. We find that β correlates with the stellar mass surface density (R = 0.62) and anti-correlates with the HI mass fraction (MHI/M*, R = -0.65), whereas the dust temperature correlates strongly with the SFR normalized by the dust mass (R = 0.73). These relations can be used to estimate T and β in galaxies with insufficient photometric data available to measure them directly through SED fitting

    Agricultural Research Service Weed Science Research: Past, Present, and Future

    Get PDF
    The U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed-crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America\u27s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency\u27s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being
    corecore