25 research outputs found

    Electrodynamic Dust Shield Technology for Thermal Radiators Used in Lunar Exploration

    Get PDF
    Two general types of thermal radiators are being considered for lunar missions: coated metallic surfaces and Second Surface Mirrors. Metallic surfaces are coated with a specially formulated white paint that withstands the space environment and adheres well to aluminium, the most common metal used in space hardware. AZ-93 White Thermal Control Paint, developed for the space program, is an electrically conductive inorganic coating that offers thermal control for spacecraft. It is currently in use on satellite surfaces (Fig 1). This paint withstands exposure to atomic oxygen, charged particle radiation, and vacuum ultraviolet radiation form 118 nm to 170 nm while reflecting 84 to 85% of the incident solar radiation and emitting 89-93% of the internal heat generated inside the spacecraft

    Development of an Electrostatic Precipitator to Remove Martian Atmospheric Dust from ISRU Gas Intakes During Planetary Exploration Missions

    Get PDF
    Manned exploration missions to Mars will need dependable in situ resource utilization (ISRU) for the production of oxygen and other commodities. One of these resources is the Martian atmosphere itself, which is composed of carbon dioxide (95.3%), nitrogen (2.7%), argon (1.6%), oxygen (0.13%), carbon monoxide (0.07%), and water vapor (0.03%), as well as other trace gases. However, the Martian atmosphere also contains relatively large amounts of dust, uploaded by frequent dust devils and high Winds. To make this gas usable for oxygen extraction in specialized chambers requires the removal of most of the dust. An electrostatic precipitator (ESP) system is an obvious choice. But with an atmospheric pressure just one-hundredth of Earth's, electrical breakdown at low voltages makes the implementation of the electrostatic precipitator technology very challenging. Ion mobility, drag forces, dust particle charging, and migration velocity are also affected because the low gas pressure results in molecular mean free paths that are approximately one hundred times longer than those at Earth .atmospheric pressure. We report here on our efforts to develop this technology at the Kennedy Space Center, using gases with approximately the same composition as the Martian atmosphere in a vacuum chamber at 9 mbars, the atmospheric pressure on Mars. We also present I-V curves and large particle charging data for various versions of wire-cylinder and rod-cylinder geometry ESPs. Preliminary results suggest that use of an ESP for dust collection on Mars may be feasible, but further testing with Martian dust simulant is required

    Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition

    Get PDF
    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell–mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR–HLA-B*4405EENLLDFVRF complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes

    What America owes to Woodrow Wilson

    No full text

    The serial interaction of stress and syncope

    Get PDF
    Many languages respect the generalization that some or all unstressed vowels are deleted. This generalization proves elusive in classic Optimality Theory, however. The source of the problem is classic OT’s parallel evaluation, which requires that the effects of stress assignment and syncope be optimized together. This article argues for a version of OT called Harmonic Serialism, in which the effects of stress assignment and syncope can and must be evaluated sequentially. The results are potentially applicable to other domains where process interaction is best understood in derivational terms
    corecore