8 research outputs found

    Industry 4.0 Disruption and Its Neologisms in Major Industrial Sectors: A State of the Art

    No full text
    Very well into the dawn of the fourth industrial revolution (industry 4.0), humankind can hardly distinguish between what is artificial and what is natural (e.g., man-made virus and natural virus). Thus, the level of discombobulation among people, companies, or countries is indeed unprecedented. The fact that industry 4.0 is explosively disrupting or retrofitting each and every industrial sector makes industry 4.0 the famous buzzword amongst researchers today. However, the insight of industry 4.0 disruption into the industrial sectors remains ill-defined in both academic and nonacademic literature. The present study aimed at identifying industry 4.0 neologisms, understanding the industry 4.0 disruption and illustrating the disruptive technology convergence in the major industrial sectors. A total of 99 neologisms of industry 4.0 were identified. Industry 4.0 disruption in the education industry (education 4.0), energy industry (energy 4.0), agriculture industry (agriculture 4.0), healthcare industry (healthcare 4.0), and logistics industry (logistics 4.0) was described. The convergence of 12 disruptive technologies including 3D printing, artificial intelligence, augmented reality, big data, blockchain, cloud computing, drones, Internet of Things, nanotechnology, robotics, simulation, and synthetic biology in agriculture, healthcare, and logistics industries was illustrated. The study divulged the need for extensive research to expand the application areas of the disruptive technologies in the industrial sectors

    Devastating Decline of Forest Elephants in Central Africa.

    Get PDF
    African forest elephants– taxonomically and functionally unique–are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002–2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced

    Range-wide indicators of African great ape density distribution

    Get PDF
    Species distributions are influenced by processes occurring at multiple spatial scales. It is therefore insufficient to model species distribution at a single geographic scale, as this does not provide the necessary understanding of determining factors. Instead, multiple approaches are needed, each differing in spatial extent, grain, and research objective. Here, we present the first attempt to model continent-wide great ape density distribution. We used site-level estimates of African great ape abundance to (1) identify socioeconomic and environmental factors that drive densities at the continental scale, and (2) predict range-wide great ape density. We collated great ape abundance estimates from 156 sites and defined 134 pseudo-absence sites to represent additional absence locations. The latter were based on locations of unsuitable environmental conditions for great apes, and on existing literature. We compiled seven socioeconomic and environmental covariate layers and fitted a generalized linear model to investigate their influence on great ape abundance. We used an Akaike-weighted average of full and subset models to predict the range-wide density distribution of African great apes for the year 2015. Great ape densities were lowest where there were high Human Footprint and Gross Domestic Product values; the highest predicted densities were in Central Africa, and the lowest in West Africa. Only 10.7% of the total predicted population was found in the International Union for Conservation of Nature Category I and II protected areas. For 16 out of 20 countries, our estimated abundances were largely in line with those from previous studies. For four countries, Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan, the estimated populations were excessively high. We propose further improvements to the model to overcome survey and predictor data limitations, which would enable a temporally dynamic approach for monitoring great apes across their range based on key indicators

    Estimated change in elephant dung density (/km<sup>2</sup>) distribution during 2002–2011 across the Central African forests.

    No full text
    <p>Results are shown as a percentage of the total area of potential elephant habitat overall (A & B) and by country (C & D) for the predictive model with variables: (A & C) survey year, Human Influence Index, corruption and the presence/absence of guards, and (B & D) survey year, proximity to road, human population density, corruption and the presence/absence of guards. The dung density (per km<sup>2</sup>) intervals are unequal and correspond to the following elephant population categories: extremely low density (0–100), very low (100–250), low (250–500), medium (500–1,000), high (1,000–3,000) and very high (3,000–7,500). With the loss of very high elephant populations in 2011, there is a significant shift into the lower density intervals over the nine years.</p

    Elephant dung density and range reduction across the Central African forests.

    No full text
    <p>Predictions are shown for (A) 2002 and (B) 2011 for the model with variables: survey year∧, Human Influence Index***, corruption*** and the presence/absence of guards***, and (C) 2002 and (D) 2011 for the model with variables: survey year∧, proximity to road∧, human population density***, corruption*** and the presence/absence of guards*** (P-values are: ‘***’ <0.001 and ‘∧’ <0.1). Increasingly darker shades of green correspond to higher densities, grey represents extremely low elephant density range (the first interval: 0–100 elephant dung piles/km<sup>2</sup>) and white is non-habitat (80 survey sites outlined in red). Cutpoints are: 0; 100; 250; 500; 1,000; 1,500; 3,000; 5,000; and 7,500 dung piles/km<sup>2</sup>. Countries 1–5 are: Cameroon; Central African Republic; Republic of Congo; DRC; Gabon.</p

    Boxplots of indices of elephant abundance and hunting intensity.

    No full text
    <p>Summaries shown are the natural logarithm of: (A) elephant dung encounter rate per 100 km grouped by the presence/absence of wildlife guards, (B) elephant dung encounter rate per 100 km grouped by the level of hunting intensity (group cutpoints are 0.6 and 1.75 hunter sign/km), and (C) hunter-sign frequency per 100 km grouped by the presence/absence of wildlife guards. Box-widths are proportional to the number of observations in each group.</p

    Encounter rate of elephant dung per kilometre.

    No full text
    <p>Results are shown for the 80 survey sites in Central Africa included in this study. Grey shading represents forest cover.</p

    Estimated conditional dependence of elephant dung density for top-ranked multi-variable models including hunter sign.

    No full text
    <p>Results are shown for the top-ranked model with variables: (A) hunter sign*, (B) survey year*, (C) proximity to roads∧, (D) human population density***, (E) corruption*** (higher values = less corrupt) and presence/absence of guards***. Also shown is (F) the Human Influence Index (HII) for the model with proximity to road and human population density variables replaced by the HII, i.e. one of the top-ranking models with variables: hunter sign**, survey year*, HII*, corruption***, and presence/absence of guards***. P-value significance codes are: ‘***’<0.001, ‘**’<0.01, ‘*’<0.05, and ‘∧’<0.1. Plot components are: Estimates on the scale of the linear predictor (solid lines) with the y-axis scale for each variable selected to optimally display the results, confidence intervals (dashed lines), and explanatory variable values of observations with a focus on the core 95% of values for hunter sign, proximity to road and human population density (rug plot - short vertical bars along each x-axis showing the x value for each site).</p
    corecore