11,005 research outputs found

    A Quantitative Non-radial Oscillation Model for the Subpulses in PSR B0943+10

    Get PDF
    In this paper, we analyze time series measurements of PSR B0943+10 and fit them with a non-radial oscillation model. The model we apply was first developed for total intensity measurements in an earlier paper, and expanded to encompass linear polarization in a companion paper to this one. We use PSR B0943+10 for the initial tests of our model because it has a simple geometry, it has been exhaustively studied in the literature, and its behavior is well-documented. As prelude to quantitative fitting, we have reanalyzed previously published archival data of PSR B0943+10 and uncovered subtle but significant behavior that is difficult to explain in the framework of the drifting spark model. Our fits of a non-radial oscillation model are able to successfully reproduce the observed behavior in this pulsar.Comment: 45 pages, 16 figures, accepted Ap

    Mid-infrared colour gradients and the colour-magnitude relation in Virgo early-type galaxies

    Get PDF
    We make use of Spitzer imaging between 4 and 16 micron and near-infrared data at 2.2 micron to investigate the nature and distribution of the mid-infrared emission in a sample of early-type galaxies in the Virgo cluster. These data allow us to conclude, with some confidence, that the emission at 16 micron in passive ETGs is stellar in origin, consistent with previous work concluding that the excess mid-infrared emission comes from the dusty envelopes around evolved AGB stars. There is little evidence for the mid-infrared emission of an unresolved central component, as might arise in the presence of a dusty torus associated with a low-luminosity AGN. We nonetheless find that the 16 micron emission is more centrally peaked than the near-infrared emission, implying a radial stellar population gradient. By comparing with independent evidence from studies at optical wavelengths, we conclude that a metallicity that falls with increasing radius is the principal driver of the observed gradient. We also plot the mid-infrared colour-magnitude diagram and combine with similar work on the Coma cluster to define the colour-magnitude relation for absolute K-band magnitudes from -26 to -19. Because a correlation between mass and age would produce a relation with a gradient in the opposite sense to that observed, we conclude that the relation reflects the fact that passive ETGs of lower mass also have a lower average metallicity. The colour-magnitude relation is thus driven by metallicity effects. In contrast to what is found in Coma, we do not find any objects with anomalously bright 16 micron emission relative to the colour-magnitude relation. Although there is little overlap in the mass ranges probed in the two clusters, this may suggest that observable ``rejuvenation'' episodes are limited to intermediate mass objects.Comment: 8 pages, 4 figure

    Halofantrine

    Get PDF

    Molecular Feshbach dissociation as a source for motionally entangled atoms

    Full text link
    We describe the dissociation of a diatomic Feshbach molecule due to a time-varying external magnetic field in a realistic trap and guide setting. An analytic expression for the asymptotic state of the two ultracold atoms is derived, which can serve as a basis for the analysis of dissociation protocols to generate motionally entangled states. For instance, the gradual dissociation by sequences of magnetic field pulses may delocalize the atoms into macroscopically distinct wave packets, whose motional entanglement can be addressed interferometrically. The established relation between the applied magnetic field pulse and the generated dissociation state reveals that square-shaped magnetic field pulses minimize the momentum spread of the atoms. This is required to control the detrimental influence of dispersion in a recently proposed experiment to perform a Bell test in the motion of the two atoms [C. Gneiting and K. Hornberger, Phys. Rev. Lett. 101, 260503 (2008)].Comment: 12 pages, 3 figures; corresponds to published versio

    Out-of-plane focusing grating couplers for silicon photonics integration with optical MRAM technology

    Get PDF
    We present the design methodology and experimental characterization of compact out-of-plane focusing grating couplers for integration with magnetoresistive random access memory technology. Focusing grating couplers have recently found attention as layer-couplers for photonic-electronic integration. The components we demonstrate are designed for a wavelength of 1550 nm, fabricated in a standard 220 nm SOI photonic platform and optimized given the fabrication restrictions for standard 193-nm UV lithography. For the first time, we extend the design based on the phase matching condition to a two-dimensional (2-D) grating design with two optical input ports. We further present the experimental characterization of the focusing behaviour by spatially probing the emitted beam with a tapered-and-lensed fiber and demonstrate the polarization controlling capabilities of the 2-D FGCs
    corecore