4,709 research outputs found

    Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase jumps of the rotating field

    Get PDF
    We report on the manipulation of the center-of-mass motion (`sloshing') of a Bose Einstein condensate in a time-averaged orbiting potential (TOP) trap. We start with a condensate at rest in the center of a static trapping potential. When suddenly replacing the static trap with a TOP trap centered about the same position, the condensate starts to slosh with an amplitude much larger than the TOP micromotion. We show, both theoretically and experimentally, that the direction of sloshing is related to the initial phase of the rotating magnetic field of the TOP. We show further that the sloshing can be quenched by applying a carefully timed and sized jump in the phase of the rotating field.Comment: 11 pages, 9 figure

    Results of investigations on an 0.015-scale 140A/B configuration of the Rockwell International space shuttle orbiter (model 49-O) in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel (OA36)

    Get PDF
    The results of wind tunnel tests of the 140A/B configuration components are reported for the fuselage, canopy, elevons, bodyflaps, pods, engine nozzles, rudder, vertical tail, and wing. The test facility, and data reduction procedures are described. Test results for each component are graphed, and tabulated source data are included

    Results of tests of a 0.010- and 0.015-scale models of space shuttle orbiter configurations 3 and 3A in the Ames Research Center 3.5 foot hypersonic wind tunnel (OA23)

    Get PDF
    Longitudinal and lateral-directional stability and control characteristics were evaluated at Mach numbers of 5.3, 7.3 and 10.3 at angles of attack up to 50 degrees with Beta = 0 degrees and, for a few cases, Beta = 5 degrees. Component force data, fuselage base pressures and shadowgraph patterns were recorded

    Multiple mapping conditioning in homogeneous reacting flows

    Get PDF
    Multiple mapping conditioning (MMC) is used to model local extinction and reignition phenomena in homogeneous, isotropic decaying turbulence. It is recognized that mixture fraction alone is not sufficient to account for turbulent scalar fluctuations and that more than one reference variable needs to be introduced. We introduce a second reference variable with a dual character: the second variable is a dissipation-like variable that emulates the intermittent behaviour of scalar dissipation and it is therefore the cause for local extinction in our modelling. However, the second variable is also used to match the scalar variance of a reaction progress variable to ensure consistency in temperature flucutations of the MMC model and Direct Numerical Simulations. The resulting model provides a (fully) closed formulation for the modelling of local extinction and re-ignition events and predictions of the joint probability distribution of mixture fraction and sensible enthalpy, of reactive species and of the global conversion rates are good and clear improvments over conventional mixture fraction based methods that use mixture fraction as the only conditioning paramenter

    PCVD7: IDENTIFICATION OF COMOROBIDITIES AMONG A HYPERTENSIVE POPULATION USING ADMINISTRITATIVE CLAIMS AND MEDICAL RECORDS DATA

    Get PDF

    A multiple mapping conditioning model for differential diffusion

    Get PDF
    This work introduces modeling of differential diffusion within the multiple mapping conditioning (MMC) turbulent mixing and combustion framework. The effect of differential diffusion on scalar variance decay is analyzed and, following a number of publications, is found to scale as Re. The ability to model the differential decay rates is the most important aim of practical differential diffusion models, and here this is achieved in MMC by introducing what is called the side-stepping method. The approach is practical and, as it does not involve an increase in the number of MMC reference variables, economical. In addition we also investigate the modeling of a more refined and difficult to reproduce differential diffusion effect - the loss of correlation between the different scalars. For this we develop an alternative MMC model with two reference variables but which also makes use of the side-stepping method. The new models are successfully validated against DNS results available in literature for homogenous, isotropic two scalar mixing

    A single amino acid exchange transfers VP16-induced positive control from the Oct-1 to the Oct-2 homeo domain

    Get PDF
    The selective association of the herpesvirus trans-activator VP16 with the human Oct-1 homeo domain is a model for differential positive transcriptional control by homeo domains. VP16 discriminates between the closely related homeo domains of Oct-1 and Oct-2 by distinguishing among their seven amino-acid differences; these differences lie on the surface that is thought to be accessible when the homeo domain is bound to DNA. Only two of these seven differences are recognized by VP16, one in each of the first two alpha-helices of the tri-alpha-helical homeo domain. The major determinant for selective association with VP16 in vitro and VP16-induced positive control in vivo is a single glutamic acid residue at position 22 in the first alpha-helix of the Oct-1 homeo domain, but the acidic properties of this residue are not critical for association with VP16 in vitro or in vivo, because it can be replaced by glutamine with little or no deleterious effect. Mere replacement of the single corresponding alanine residue in the Oct-2 homeo domain with the key glutamic acid residue is sufficient to confer on the Oct-2 homeo domain the ability to associate with VP16 in vitro and respond to VP16-induced positive control in vivo. Thus, the specificity of homeo domain positive control can be conferred by a single amino acid difference

    Cryogenic microstripline-on-Kapton microwave interconnects

    Get PDF
    Simple broadband microwave interconnects are needed for increasing the size of focal plane heterodyne radiometer arrays. We have measured loss and cross-talk for arrays of microstrip transmission lines in flex circuit technology at 297 and 77 K, finding good performance to at least 20 GHz. The dielectric constant of Kapton substrates changes very little from 297 to 77 K, and the electrical loss drops. The small cross-sectional area of metal in a printed circuit structure yields overall thermal conductivities similar to stainless steel coaxial cable. Operationally, the main performance tradeoffs are between crosstalk and thermal conductivity. We tested a patterned ground plane to reduce heat flux.Comment: 3 pages, 3 figures, submitted to The Review of Scientific Instrument

    First Season QUIET Observations: Measurements of Cosmic Microwave Background Polarization Power Spectra at 43 GHz in the Multipole Range 25 ≤ ℓ ≤ 475

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43 GHz and 94 GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the cosmic microwave background (CMB). QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hr of data were collected, first with the 19 element 43 GHz array (3458 hr) and then with the 90 element 94 GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ≈1000 deg^2. This paper reports initial results from the 43 GHz receiver, which has an array sensitivity to CMB fluctuations of 69 μK√s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross-correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range ℓ = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3σ significance, the E-mode spectrum is consistent with the ΛCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35^(+1.06)_(–0.87). The combination of a new time-stream "double-demodulation" technique, side-fed Dragonian optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r = 0.1
    • …
    corecore