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This work introduces modeling of differential diffusion within the multiple mapping
conditioning (MMC) turbulent mixing and combustion framework. The effect of
differential diffusion on scalar variance decay is analyzed and, following a number of
publications, is found to scale as Re−1/2. The ability to model the differential decay
rates is the most important aim of practical differential diffusion models, and here
this is achieved in MMC by introducing what is called the side-stepping method.
The approach is practical and, as it does not involve an increase in the number of
MMC reference variables, economical. In addition we also investigate the modeling
of a more refined and difficult to reproduce differential diffusion effect – the loss of
correlation between the different scalars. For this we develop an alternative MMC
model with two reference variables but which also makes use of the side-stepping
method. The new models are successfully validated against DNS results available in
literature for homogenous, isotropic two scalar mixing. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4864101]

I. INTRODUCTION

Fundamental studies of turbulent mixing are of importance to a broad range of engineering
disciplines such as combustion, environmental fluid dynamics, and chemical processing. Due to
the complexity of turbulent flows, the majority of fundamental scalar mixing studies consider the
evolution of a single scalar only. In practice, of course, more than one scalar is usually mixed. For
example, the structure of a turbulent flame is strongly influenced by the complex reactive-diffusive
interactions involving numerous chemical species. In general, each scalar has its own molecular
diffusivity and may evolve differently to other species due differential diffusion. This effect is most
noticeable in flows where turbulent mixing is less dominant than molecular mixing, for example, in
low Reynolds number flows and small scale mixing processes. Differential diffusion is especially
important in mixtures containing species that are substantially more or less diffusive than the other
constituents. An example of this latter case is the combustion of hydrogen. Due to the high diffusivity
of hydrogen relative to other species (because its much lower molecular weight) and the importance
of hydrogen containing species on carbon monoxide oxidation, it is speculated that differential
diffusion plays an important role in the burn-out of carbon monoxide (a dangerous pollutant), and
also in flame extinction and re-ignition processes which affect combustor stability.1 The ability
to predict these effects is increasingly important as the focus turns to hydrogen containing fuels
such as syngas. However, many existing predictive models neglect differential diffusion. This has
usually been based on the assumption that turbulent mixing is dominant over molecular mixing thus
simplifying the theory behind many turbulent mixing models and becoming an integral part of them.
In light of the above discussion it is apparent that this assumption is not valid for all flows thus

a)Electronic mail: a.klimenko@uq.edu.au

1070-6631/2014/26(2)/025107/16/$30.00 C©2014 AIP Publishing LLC26, 025107-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/212696723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.4864101
http://dx.doi.org/10.1063/1.4864101
http://dx.doi.org/10.1063/1.4864101
mailto: a.klimenko@uq.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4864101&domain=pdf&date_stamp=2014-02-12


025107-2 Dialameh, Cleary, and Klimenko Phys. Fluids 26, 025107 (2014)

motivating several studies to better understand the physics of differential diffusion and to suggest
improved predictive models. A brief review follows.

A number of differential diffusion models for transported probability density function (PDF)2, 3

methods are available in the literature. Chen and Chang1 develop a method for stochastic mixing
models and demonstrate its application in the context of the modified Curl’s4 and interaction by
exchange with the mean (IEM)5 mixing models. A differential diffusion form of the Lagrangian spec-
tral relaxation (LSR) model is developed by Fox.6 More recently McDermott and Pope7 consider the
inclusion of differential spatial diffusion, while Richardson and Chen8 propose a new approach for
treating differential diffusion using both the IEM and Euclidean minimum spanning tree (EMST)9

micro-mixing models. Various publications consider differential diffusion in the context of other
combustion models; Kronenburg and Bilger10, 11 and Smith12 extend conditional moment closure
(CMC)13 to account for differential diffusion while differential diffusion in flamelet14, 15 models are
reported in Pitsch and Peters16 and Pitsch.17 Differential diffusion for the linear-eddy model and the
eddy-damped quasinormal Markovian (EDQNM) model are developed by Kerstein18 and Ulitsky
et al.19, respectively. Theoretical and DNS investigations of differential diffusion are also widely re-
ported. Following on from Bilger’s20 observation of differential diffusion effects in methane diffusion
flames, Bilger and Dibble21 introduce a differential diffusion variable that is the difference between
two mixture fractions (or passive scalars). That quantity is subsequently used by Kerstein et al.22 in
their analysis of the Reynolds number scaling of differential diffusion, and in a series of DNS studies
by Yeung and co-workers,23–26 Jaberi et al.27 and Nilsen and Kosály.28, 29 Experimental studies of
differential diffusion are reported for both reacting and non-reacting flows. For example, differential
diffusion in non-reacting flows is explored by Drake et al.30, 31, Masri et al.32, Smith et al.33 and
Dibble and Long34. While reacting flows are considered by Smith et al.35 and Bergmann et al.36 Most
of the above cited works are for non-premixed combustion, which is also the focus of the present
research, but it is noted that the effect of differential diffusion on premixed flames are significant and
discussed in many publications (e.g., Kuznetsov and Sabelnikov15) but not specifically considered
here.

In the present work we develop an extension to the multiple mapping conditioning (MMC)
model so that it too can account for differential diffusion effects. MMC, which was first derived by
Klimenko and Pope,37 is a modeling framework for turbulent combustion which effectively unifies
the features of CMC and PDF models. Deterministic and stochastic formulations of MMC have been
derived and tested for various flame configurations; see Cleary and Klimenko38 for a recent review.
The stochastic formulation of MMC is a full-scale PDF method but one where turbulent mixing
is local to a low-dimensional reference variable manifold. Mixing localness is a key principle of
high quality turbulent mixing models9 along with other important attributes also satisfied by MMC
such as independence, linearity and relaxation to a Gaussian scalar distribution in homogeneous
turbulence. For non-premixed combustion of equally diffusing species, it is possible to select a
one-dimensional reference variable space representing mixture fraction. This effectively imposes a
CMC-type closure onto a PDF model, giving MMC the advantages of both of those methods. MMC
models with multiple-dimensional reference variable spaces containing specific enthalpy and scalar
dissipation39 have also been developed for partially premixed combustion.

In general there are two aspects of molecular diffusion in PDF methods which need to be
considered: the first is spatial transport,1, 7 which appears in the PDF transport equation as gradient
diffusion in physical space; and the second is the process of mixing of scalars at a fixed location,6, 8

which appears as transport in composition space. Differential diffusion may affect both of these.
Spatial transport by molecular diffusion can be significant in low Reynolds number turbulent mixing.
Moreover, in large eddy simulations (LES) the locally dominant physical processes depend on the
filter width and the local viscous length scale. When the filter width becomes small relative to the
viscous scale, molecular diffusion needs to be considered. While an MMC-consistent treatment of
differential spatial transport can be achieved with the use of the shadow position mixing model
(SPMM), which has been recently suggested by Pope,40 the focus of this present study is on the
effects of differential diffusion on the local mixing in composition space. We examine one-point
joint characteristics and avoid complications associated with inhomogeneity and chemical reactions
by considering differential diffusion of unreactive passive scalars in statistically stationary, isotropic
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turbulent flow. Two different MMC models for treating differential diffusion are introduced: the
first model has one reference variable and is able to predict the differential rate of decay of scalar
variances, while the second model which has two reference variables is also able to predict the loss
of correlation between differentially diffusing scalar fields.

The remainder of this paper is organized as follows. Fundamentals of differential diffusion are
presented in Sec. II, covering the governing scalar transport equations and some new theory on
the Reynolds and Schmidt number scaling of differential diffusion. In Sec. III extensions of the
MMC model for differential diffusion are developed and validated against DNS results of Yeung
and Pope23 and Yeung and Luo.26 The dependence of the model parameters on the Reynolds and
Schmidt number are also demonstrated. Conclusions are drawn in Sec. IV.

II. FUNDAMENTALS OF DIFFERENTIAL DIFFUSION

In this section we present some fundamentals of turbulent mixing of differentially diffusing
scalars. Part A presents the transport equations governing the advection-diffusion of two passive
scalars in homogenous turbulent flow, along with equations for the transport of their variances
and covariance. In Part B the spectral view of diffusion, in general, and differential diffusion, in
particular, is reviewed and in that context we analyze the Reynolds and Schmidt number scaling of
differential diffusion.

A. Governing equations

We consider two passive scalars YI and YII in a homogeneous, isotropic turbulent flow with
decaying turbulence and without a mean scalar gradient. This latter simplification allows the mean
value of each scalar to be taken as zero without a loss of generality. Each scalar has a different
molecular diffusivity denoted by DI and DII, respectively, with corresponding Schmidt numbers ScI

and ScII. The fluctuations of each scalar evolve by the advection-diffusion equations,

∂YI

∂t
+ ui

∂YI

∂xi
= DI

∂2YI

∂xi∂xi
, (1)

∂YI I

∂t
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∂YI I

∂xi
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∂2YI I

∂xi∂xi
, (2)

where ui = ui(x) is the turbulent velocity field. The mean scalar variances
〈
Y 2

I

〉
and

〈
Y 2
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〉
decay with
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〉
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〈(
∂YI

∂xi

)2
〉

= −χI, (3)
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〉
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)2
〉
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where χ I and χII are the scalar dissipation rates. The most important joint statistic is the
covariance,〈YIYII〉, which evolves according to

∂ 〈YIYII〉
∂t

= −2 (DI + DII)

〈
∂YI

∂xi

∂YII

∂xi

〉
= −χI,II, (5)

where χ I,II denotes the joint scalar dissipation. We also make use of the cross-correlation coefficient,
ρI,II, which is defined as

ρI,II = 〈YIYII〉[〈
Y 2

I

〉 〈
Y 2

II

〉]1/2 . (6)
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B. Reynolds and Schmidt number scaling of differential diffusion

In this section we first review the general spectral properties of turbulent scalar mixing before
looking specifically at the spectra of two differentially diffusing scalars. Whereas much previous
literature21, 28,6, 19, 22 has chosen to quantify differential diffusion in terms of the difference of two
passive scalars, we instead quantify differential diffusion in terms of the ratio of scalar dissipation
timescales. The advantage is that this quantity is stationary in time. We develop relations for the
Reynolds and Schmidt number scaling of the differential timescale ratio and make comparison to
the scaling that is suggested in the previous literature.

The characteristic feature of any turbulent flow is the occurrence of eddies of different length
scales. In decreasing order of size the four scales bounding different turbulent energy regimes
are: the macroscale (L); the integral scale (l); the Taylor microscale (λ); and the Kolmogorov
microscale (η). According to Kolmogorov’s eddy cascade theory41 the kinetic energy contained in
the integral scale eddies is transferred down to the Kolmogorov scales where it is dissipated by
viscosity. Turbulent fluctuations of transported scalars follow a similar cascade; the scalar variance
generated at the large scales is transferred and dissipated by molecular diffusion at either the
Batchelor or Oboukov-Corrsin scales depending on whether the molecular diffusivity is relatively
larger or smaller than the kinematic viscosity (i.e., Schmidt number dependence). These dissipative
length scales (η, ηB, and ηOC) and their corresponding wavenumbers (kK, kB, and kOC) are as
follows:

The Kolmogorov scale: kK =
( ε

ν3

)1/4
= 1

η
, (7)

The Batchelor scale: kB =
( ε

νD2

)1/4
= kK Sc1/2 = 1

ηB
, (8)

The Oboukov-Corrsin scale kOC =
( ε

D3

)1/4
= kK Sc3/4 = 1

ηOC
, (9)

where ε is the kinetic-energy dissipation rate, ν is the kinematic viscosity, D is the molecular
diffusivity, and Sc = ν

D is the Schmidt number.
Based on Kolmogorov’s eddy cascade hypothesis,41 in the inertial subrange (k0 < k < kK)

the turbulence is unaffected by viscosity and the kinetic energy spectrum scales according to the
well-known k−5/3 law. The scaling of the turbulent scalar spectrum is Schmidt number dependent.
For Sc < 1, the scales are ordered as kOC < kB < kK and the scalars dissipate at Oboukov-Corrsin
scale while the kinetic energy dissipates at the smaller Kolmogorov scale. Following Oboukov42 and
Corrsin43 the passive scalar variance spectrum in the inertial-convective subrange (k0 < k < kOC)
also follows a k−5/3 rule

Eθ (k) = C1χε−1/3k−5/3, (10)

where C1 is the Oboukov-Corrsin constant. Alternatively, for Sc > 1 the wavenumber cut-offs are
ordered as kK < kB < kOC and the scalar variance dissipates at the Batchelor scale while the turbulent
kinetic energy dissipates at the relatively larger Kolmogorov scale. Batchelor44 predicted that in the
viscous-convective subrange (kOC < k < kB) the spectrum scales as

Eθ (k) = C2χ
(ν

ε

)1/2
k−1, (11)

where C2 is the Batchelor constant. It is noted that there are differences between gaseous and liquid
flows. The former typically have Schmidt numbers of O(1) hence the dissipative Oboukov-Corrsin
scale is of the same order as the Kolmogorov scale, and the later typically have Schmidt numbers of
O(103) hence the scalar dissipation extends to the dissipative Batchelor scale which is much smaller
than the Kolmogorov microscale.
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FIG. 1. Energy and variance spectrum of two scalars with different diffusivity for the case ScII < ScI ≤ 1.

We now consider the spectral properties of two differentially diffusing scalars. For the passive
scalars YI and YII introduced in Sec. II A, the scalar dissipation time scales are defined as

τI = 2
〈
Y 2

I

〉
χI

, (12)

τI I = 2
〈
Y 2

I I

〉
χ I I

. (13)

In general, two scalars with different dissipation times may have scalar dissipations and scalar
variances which are both different. For theoretical analysis, however, it is convenient to consider two
scalars with different variances but the same scalar dissipation, χ I = χII = χ . Figure 1 illustrates the
variance spectrum of the two scalars in the inertial-convective subrange for a low Schmidt number
flow with ScII < ScI ≤ 1. As discussed above, the dissipation occurs at the Oboukov-Corrsin scales
denoted in wavenumber space by kOC−I and kOC−II. The scalar variance is equal to the integral over
the entire wave number space and therefore the difference between the two scalar variances (the
cross-hatched area in Figure 1) is given by

〈
Y 2

I

〉 − 〈
Y 2

I I

〉 =
∫ kOC−I

kOC−I I

Eθ (k) dk. (14)

Now, by substituting Eθ (k) from Eq. (10) into Eq. (14) we get

〈
Y 2

I

〉 − 〈
Y 2

I I

〉 = 3

2
C1χε−1 / 2ν1 / 2

(
Sc−1 / 2

I I − Sc−1 / 2
I

)
. (15)

Further, by substituting ε = u3/l, ν = ul/Rel and Tl = l/u into Eq. (15), where u is the turbulent
velocity, l is the integral length scale, Rel is the integral Reynolds number, and Tl is the integral time
scale, and dividing the result by χ we get〈

Y 2
I

〉
χ

−
〈
Y 2

I I

〉
χ

= 3

2
C1TlRe−1 / 2

l

(
Sc−1 / 2

I I − Sc−1 / 2
I

)
. (16)

Next, substituting Eqs. (12) and (13) on the left side of Eq. (16) then dividing both sides by Tl yields

τI − τI I

Tl
= 3C1Re−1/2

(
Sc−1/2

I I − Sc−1/2
I

)
. (17)
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FIG. 2. Energy and variance spectrum of two scalars with different diffusivity for the case ScII > ScI > 1.

Without loss of generality, we set ScI = 1 as a reference value. We also know that at high Reynolds
number the ratio of the integral to dissipation timescales, Tl/τ 1, is a constant value45, 46 which we
will denote by C3. With these last two simplifications we finally arrive at a low Schmidt number
relationship for the ratio of the dissipation timescales as a function of Reynolds and Schmidt numbers

τI I

τI
= 1 − CRe−1 / 2

(
Scm

I I − 1
)
, (18)

where m = −1/2 and C = 3C1C3

We now turn our attention to the high Schmidt number case with ScII > ScI > 1. Figure 2
illustrates the variance spectrum Eθ (k) for this case, showing both the −5/3 and −1 spectra and
dissipation at the Batchelor scales, kB − I and kB − II. As before, the difference between the two scalar
variances (the cross-hatched area in Figure 2) is given by

〈
Y 2

I I

〉 − 〈
Y 2

I

〉 =
∫ kB−I I

kB−I

Eθ (k) dk. (19)

Substituting Eθ (k) from Eq. (11) into Eq. (19) gives〈
Y 2

I

〉 − 〈
Y 2

I I

〉 = 1

2
C2χε−1 / 2ν1 / 2 (ln (ScI I ) − ln (ScI )) , (20)

and putting ε = u3/l, ν = ul/Rel , and Tl = l/u into Eq. (20) and dividing by χ leads to〈
Y 2

I

〉
χ

−
〈
Y 2

I I

〉
χ

= 1

2
C2TlRe−1 / 2

l (ln (ScI I ) − ln (ScI )) . (21)

Now, substituting Eqs. (12) and (13) on the left side of Eq. (21) then dividing through by Tl while
setting ScI = 1 (as previously explained) leads to the high Schmidt number relationship for the ratio
of the dissipation time as a function of Reynolds and Schmidt numbers

τI I

τI
= 1 − C2Re−1 / 2 ln (ScI I ) . (22)

It is interesting to compare the scaling developed above with other forms reported in the
literature. We consider only the Sc < 1 case which is most typical of combustion gases. First we
need to formulate our result in terms of the scalar difference, so following Bilger and Dibble21 we
define

z = YI − YI I , (23)

which is rearranged to

YI = YI I + z. (24)
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Since the mean values of YI and YII are zero, the mean value of z is also zero and we simply find the
variance of Eq. (24) as 〈

Y 2
I

〉 = 〈
Y 2

I I

〉 + 〈
z2〉 + 2 〈YI I z〉 . (25)

Differential diffusion occurs in the wavenumber band that is larger than the dissipative Oboukov-
Corrsin scale of the most diffusive scalar. So for the case being considered, fluctuations of z occur
mainly for k > kOC − II (see Figure 1). Furthermore, if the hypothesis of stochastic independence of
large-scale and small-scale fluctuations in turbulent flows is taken into account,15 we can assume
that 〈YIIz〉 ≈ 0 since the fluctuations of z overlap with fluctuations of YI but not with the fluctuations
of YII (note that 〈YIz〉 �= 0). Upon substitution of this approximation and

〈
Y 2

I I

〉
/
〈
Y 2

I

〉 = τI I /τI into
Eq. (25) we find that

τI I

τI
− 1 ≈

〈
z2

〉
〈
Y 2

I

〉 . (26)

Finally by substituting Eq. (18) into Eq. (26) we get〈
z2

〉
〈
Y 2

I

〉 ≈ C Re−1/2 (
Scm

I I − 1
)
. (27)

This Re−1/2 scaling is consistent with the theory developed by Kerstein et al22 and later corroborated
by the DNS of Nilsen and Kosály.28 Reynolds number dependence is also analysed by Fox6 for the
study of differential diffusion in forced homogeneous isotropic turbulence and scales as

〈
z2

〉 ∼ Re−0.3

which is close to the −1/2 theoretical value discussed above. The literature contains far fewer studies
of the Schmidt number scaling but the result in Eq. (27) with m = −1/2 seems to be consistent with
the finding of Ulitsky et al.19

III. AN MMC MIXING MODEL FOR DIFFERENTIAL DIFFUSION

Extensions of MMC to account for the effects of differential diffusion are developed and tested
against DNS data23, 26 for binary mixing of two scalars, YI and YII, with differential diffusivities
characterized by Schmidt numbers ScII < ScI ≤ 1. In Part A we present the basic MMC model. In
Part B an extended MMC model with a single reference variable is developed for the prediction
of differential decay of scalar variance. In Part C an alternative MMC model with two reference
variables is developed. In addition to correct prediction of differential decay of variance this second
model can also predict the rate of decorrelation of the differentially diffusing scalars. We also
demonstrate correct Schmidt and Reynolds number scaling of the two models. Predictions for both
differential decay of scalar variance and the rate of decorrleation are validated against DNS with
different Schmidt and Reynolds numbers.23, 26

A. The basic MMC model

In MMC (as in other PDF methods) the turbulent scalar fields, whose mean and covariance
evolves according to Eqs. (3)–(5), are modeled using an ensemble of Pope particles which are
notional particles which possess scalar quantities subject to a mixing operation.47 In homogenous
turbulence the passive scalars YI and YII are modeled by a discrete mixing operation. We use the
MMC-Curl particle interaction mixing model whereby particles are mixed in pairs and evolve as

Y ∗,new
I = Y ∗

I (1 − α) + ŶIα, (28a)

Y ∗,new
I I = Y ∗

II (1 − α) + ŶIIα. (28b)

Here the asterisk denotes values assigned to individual Pope particles, the acute symbol indicates
the two-particle average of the scalars prior to mixing and α ∈ [0, 1] is the mixing extent which
is related to the turbulent mixing timescale. The mixing operation should ideally satisfy the set of
principles suggested by Subramaniam and Pope.9 The most important of these, at least within the
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current context, are decay of variance consistent with Eqs. (3) and (4) to a Gaussian distribution,
linearity and independence of mixing, and localness in composition space. Traditional mixing models
satisfy some but not all of these principles. Curl’s model48 satisfies linearity and independence but
violates the localness requirement leading to significant over prediction of conditional fluctuations
of reactive scalars in jet flames.49 EMST is local and predicts Gaussian decay but violates linearity
and independence. MMC, on the other hand, satisfies all of these principles. Localness is achieved in
MMC by forcing mixing to be between pairs of particles which are local in a reference variable space.
The reference variables are modeled to emulate the major statistics of the turbulent scalar fields but,
at the same time, they are mathematically independent of the stochastic scalar values Y*. Different
versions of MMC use different types of reference variables; for example, both stochastic Markov
processes37, 50 and LES-simulated scalar fields51 have been previously used to generate the MMC
reference variables. In this work the reference variables, ξ , are modeled by Ornstein-Uhlenbeck
processes45 of the following form:

dξ = −ξ (t)

θ
dt +

(
2

θ

)1/2

dW (t) , (29)

where W(t) is a Wiener process and θ is the reference variable dissipation timescale.
In most conventional joint PDF models, the dissipation of scalar variance is controlled exclu-

sively by the mixing model in Eq. (28) and the parameter α has a major influence. In this respect
MMC is substantially different. Mixing is local within a reference space which has the effect of
causing scalar fluctuations to decay towards the scalar mean that is conditionally averaged on that
reference space. Therefore the parameter α is linked to what we call the minor dissipation timescale,
denoted here as τD. Following Klimenko’s analysis52 of conditional dissipation in various mixing
models, a new parameter γ is defined as

γ = 1 − (1 − α)2 . (30)

Its ensemble mean is a function of the numerical time step and minor dissipation timescale

〈γ 〉 = 4dt

τD
. (31)

The major dissipation of scalar variance occurs due to the diffusion in reference variable space
and the parameter θ in Eq. (29) is called the major dissipation timescale. The MMC localness
parameter, �, is defined as the ratio of the minor to major dissipation timescales, � = τD/θ . Of
course, this interpretation of major and minor scalar fluctuations is made on the assumption that the
reference space adequately represents the multidimensional space that is accessed by the fluctuating
scalar field. The concepts of major and minor dissipation timescales are discussed in detail in
previous publications.52

B. An MMC model for predicting differential decay of scalar variance
(one reference variable method)

The primary objective of any differential diffusion model, especially those for practical appli-
cations, is the ability to model the differential rates of decay of scalar variance. For this purpose we
propose an MMC model where the mixing of both Y ∗

I and Y ∗
I I is localized in the space of a single

reference variable ξ I which is modeled according to Eq. (29). The major dissipation time scale θ I is
related to the physical dissipation timescale, τ I; the dissipation timescale for the less diffusive species
Y ∗

I . Conventionally these two values are close to each other and if θ I is properly selected (below this
is achieved by matching the modeled decay of Y ∗

I to DNS data23) then the correct evolution of Y ∗
I

ensues. Since ScII < ScI then τII/τ I < 1 according to Eq. (18). The faster rate of dissipation for Y ∗
I I is

modeled by extending the mixing window (the average distance between particles in the reference
variable space). Such an extension of the mixing window can be achieved in a number of ways
and, generally, the order of mixing of the scalars is not important. In the present work, the mixing
window for the more diffusive scalar is enlarged by “side stepping” (explained below). This method
is selected for the sake of simplicity and convenience as it uses the same algorithm for particle pair
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dt

dts

t=0

FIG. 3. Conceptual sketch of the side-stepping method.

selection and mixing of both scalars. In this case, however, the order of mixing is fixed as the side
step follows the original time step: the more diffusive scalar is mixed after mixing the less diffusive
scalar. The full implementation of the model is as follows. The reference variable ξ I is advanced by
a time increment dt at which point scalar Y ∗

I is mixed after localizing in ξ I-space. At that point ξ I is
advanced by a further time increment dts = rsdt at which point scalar Y ∗

I I is localized in the updated
ξ I-space and mixed. That second time increment is a temporary side step and rs is so called side
step parameter in this model. Essentially the side step increases the mixing of the more diffusive
scalar by increasing the mixing window or the modeled time available in which mixing takes place.
As described below rs is modeled so that Y ∗

I I evolves correctly. After Y ∗
I I is mixed the side step

of ξ I is discarded and the simulation continues. The process is shown schematically in Figure 3.
It is emphasized that only the reference variable is modeled discontinuously and the conservation
equations of the physical scalars YI and YII are not violated.

In this model the major dissipation time θ I determines the variance decay rate of the less
diffusive species while rs determines the differential decay rate and in turn the decay rate of the
more diffusive species. For closure, therefore, we require a model for rs. First, we note the existence
of the additional diffusion in reference space, which is associated with mixing. The intensity of this
diffusion is given by53

Dm = d2
m

β̃τD
, β̃ =

〈
1 − α2

〉
〈1 − α〉 , (32)

where Dm is the corresponding effective diffusion coefficient and d2
m is the square of the characteristic

distance between mixing particles. In the side stepping model, there is an increase in the mixing
window by an additional side step of dts which results in additional stirring of the particles leading
to

d2
m = d2

0 + 2Bdts, (33)

where d2
0 is the average of the square distance between nearest particles. In the present work where

a large number of particles are used in order to minimize stochastic errors, we can assume that d2
0 is

negligible in comparison with the term 2Bdts in Eq. (33). In cases with larger inter-particle spacing,
for example, sparse-Lagrangian MMC simulations, the diffusion associated with positive d2

0 should
be taken into account.47 Hence, additional diffusion is created without varying the mixing extent α.
As a result, the effective diffusion coefficient after side stepping and mixing is equal to

Bs = B + Dm, (34)

where B = 1/θ I. Substituting Eq. (32) into Eq. (34) where dts = rsdt and τD is substituted from
Eq. (31) we have

Bs

B
= τI

τI I
= 1 + rs

〈γ 〉
2β̃

. (35)

This last equation is the relationship between scalar dissipation time scale ratio and the side step
parameter rs. From Eq. (18) we see that this ratio is also related to the physical flow properties,
characterized by the Reynolds and Schmidt numbers. By substituting Eq. (35) into Eq. (18) the side
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stepping parameter is itself related to the flow physics by

rs =
(

2β̃

〈γ 〉
) (

CRe−1 / 2
(
Scm

I I − 1
)

1 − (
CRe−1 / 2

(
Scm

I I − 1
))

)
. (36)

The MMC model developed above is now validated against the DNS data of Yeung and Pope23

for the binary mixing of two differentially diffusing scalars in statistically stationary, homogeneous,
isotropic turbulence. Two different DNS simulations are considered; in the first the scalar pairs have
ScI = 1 and ScII = 0.25 while in the second simulation ScI = 1 and ScII = 0.5. The flow has a Taylor
Reynolds number of Reλ = 38, an integral Reynolds number of Rel = 216.6 and an eddy turn-over
time of 62.5 s. The MMC simulations are performed using 10 000 Pope particles and a numerical
time step of 0.1 s. Additional simulations with as many as 30 000 Pope particles and with a numerical
time step of 0.01 s indicated that the results are relatively insensitive to changes in the numerical
setup. Although a large number of particles are used in these simulations, so that time resolved
variances and covariances can be obtained with small stochastic errors, practical implementations
of the model within a CFD solver would typically use far few particles. The scalar fields are
initialized by Y ∗

I = Y ∗
I I and given a standard normal distribution such that

〈
Y ∗

I

〉 = 〈
Y ∗

I I

〉 = 0 and〈
Y ∗2

I

〉 = 〈
Y ∗2

I I

〉 = 1. Similarly, the reference variable is initialized with a standard normal distribution.
The MMC localness parameter, �, the constant, C, in Eq. (36) and the mixing extent α are the three
model parameters requiring explicit selection. The first is a time-invariant quantity whose value can
be flow dependent.52 Here it is selected manually so that the decay of

〈
Y ∗2

I

〉
matches the DNS data

while the decay of
〈
Y ∗2

I I

〉
is modeled implicitly through the side stepping process with rs given by

Eq. (36). The value of α is not critical and any value (or even random values4) between 0 and 1 can
be used since the other parameters 〈γ 〉 and β̃ in Eq. (36) will be correspondingly adjusted through
Eqs. (30) and (32). The results presented in this work are for α = 0.02.

Figure 4 shows the scalar variances versus normalized time which is defined as the simulation
time divided the DNS eddy turn-over time. The results for the two simulations with (ScI = 1,
ScII = 0.25) and (ScI = 1, ScII = 0.5) are shown on the same set of axes. As can be seen the dissipation
of scalar fluctuations by mixing occurs at different rates due to their different diffusivities. The results
show exponential decay of the variances, indicated by approximately straight lines of constant slope
on the linear-log plot. A reasonable match between the MMC predicted decay rate and the DNS
data of Yeung and Pope23 for the first scalar (ScI = 1) is obtained by setting � = 0.1, which is
close the value of 1/8 used by Wandel and Klimenko50 for a reacting but non-differentially diffusing
case. The parameter � within the range of 0.5 and 1, is also tested in simulations of Sandia Flame
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FIG. 4. Scalar variances versus normalized time. Symbols denote DNS data of Yeung and Pope;23 solid lines denote
predictions by the MMC model with one reference variable.
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D.54 To match the decay rate of the second scalar we found that the best match was obtained with
C = 1.24. Importantly the same set of model parameters are used for the two simulations and the
model correctly predicts increasing scalar variance decay with decreasing Schmidt number.

C. An MMC model for predicting differential decay of scalar variance with controlled
rate of decorrelation (two reference variable method)

In this section we present a second MMC model which is capable of predicting both the
differential scalar variance decay rates (as was the first model) and the rate of decorrelation of those
differentially diffusing scalars. The first objective is handled with the side stepping method described
in Sec. III B. The second objective, to predict the loss of correlation, is a much more difficult task.
We propose a model with two independent reference variables, ζ I and ζII, which are related to
two independent Ornstein-Uhlenbeck processes, ξ I and ξII, modeled according to Eq. (29). We set
the major dissipation time scales as θ I = θII. The reference variables are define as functions of ξ I

and ξII:

ζI = ξI , (37a)

ζI I = f (ξI , ξI I ) . (37b)

Mixing occurs by localizing Y ∗
I in ζ I-space and Y ∗

I I in ζII-space and the function f therefore
determines the rate of decorrelation of ζ I and ζII and subsequently the decorrelation rate of Y ∗

I
and Y ∗

I I . A simple linear function is used here

ζI I = f (ξI , ξI I ) = aξI + bξI I , (38)

where a = exp (−μt) and b = √
1 − a2. The parameter μ is called the decorrelation parameter; a

value of μ = 0 corresponds to complete correlation of ζ I and ζII at all times, while μ > 0 results
in an increasing rate of decorrelation. Note that if we set μ = 0 the two-reference variable model is
equivalent to the previous one-reference variable model.

The model works as follows. The Ornstein-Uhlenbeck processes ξ I and ξII are advanced by a
time increment dt at which point scalar Y ∗

I is localized in ζ I-space and mixed. At that point ξ I and
ξII are advanced by a further time increment dts = rsdt at which point scalar Y ∗

I I is localized in
ζII-space and mixed. As described for the one reference variable model, that second time increment
is a temporary side step and after mixing of scalar Y ∗

I I both ξ I and ξII are returned to their values
prior to the side step. As before, the side step parameter rs is modeled according to Eq. (36).

The MMC model developed above is once again validated against the DNS data of Yeung and
Pope23 that was described in Sec. III B. In this section we also demonstrate correct scaling with
Reynolds number by comparison with the DNS of Yeung and Luo26 who looked at differentially
diffusing scalar pairs (ScI = 1 and ScII = 0.25) over a range of Taylor Reynolds numbers Reλ = 38,
70, and 90. Unless otherwise noted, the discussion below refers to the DNS of Yeung and Pope23

with Reλ = 38. As before the MMC simulations are performed using 10 000 Pope particles and a
numerical time step of 0.1 s.

Figure 5 shows the scalar variances versus normalized time for two scalars with ScI = 1
and ScII = 0.25. As for the one reference variable model the best results are found by setting
� = 0.1 and C = 1.24. Note that this simulation covers a longer time duration than does the previous
result shown in Figure 4, but the inset in Figure 5 shows the initial period for which DNS data are
available.

We now analyse the scalar decorrelation. Figure 6 shows a scatter plot of Y ∗
I I versus Y ∗

I for two
scalars with ScI = 1 and ScII = 0.25 at 80 eddy turn-over times. This result is for a simulation with
the decorrelation parameter set to μ = 5 × 10−5. Initially the two scalars are fully correlated and
collapse to the red dashed line which has a slope of unity. Over time the scalars become decorrelated
due to the action of differential diffusion as represented by the scatter data and the solid green mean
line with a slope less than one. A more quantitative perspective of the decorrelation is found in
Figures 7–9. Figure 7 shows DNS data and model results for the correlation coefficient ρI, II that is
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FIG. 5. Scalar variances versus normalized time. Symbols denote DNS data of Yeung and Pope;23 solid lines denote
predictions by the MMC model with two reference variables.

defined in Eq. (6) for two scalar pairs (ScI = 1, ScII = 0.25) and (ScI = 1, ScII = 0.5). Modelling is
performed for five different values of μ. As expected μ = 0 results in full correlation at all times. As
previously mentioned the two reference variable model with μ = 0 is equivalent to the one reference
variable model. In this situation, although that model can accurately predict the differential decay
of scalar variance, the scalars remain fully correlated which is counter to physical expectations.
As μ is increased, the rate of decorrelation also increases. The best results for this particular flow
are obtained by setting μ = 5 × 10−5 for (ScI = 1, ScII = 0.25) and μ = 1.4 × 10−5 for (ScI

= 1, ScII = 0.5) while μ = 5 × 10−6 yields excessively slow rate of decorrelation and μ = 5 ×
10−4 gives a decorrelation time that is an order of magnitude smaller than the DNS decorrelation
time. Figure 8 illustrates the evolution of the cross-correlation coefficient ρI, II for two scalars with
(ScI = 1, ScII = 0.25) at three different Reynolds numbers (Reλ = 38, 70, and 90). Here the model
results are compared with the DNS of Yeung and Luo26 who reported scalar decorrelation rates for

FIG. 6. Particle scatter plot of Y ∗
I I versus Y ∗

I at normalized time t* = 80.
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three different Reynolds numbers (but not the scalar variance decay rates). An appropriate agreement
with DNS results for Reλ = 38, 70, and 90 are achieved by setting μ = 2.2 × 10−5, 3 × 10−5, and
5 × 10−5, respectively. The cross-correlation coefficient of two reference variables ζ I and ζII is
denoted by ρ

ζ

I,I I and defined similarly to ρI, II in Eq. (6). It should be noted that the initial value

ofρζ

I,I I is slightly reduced in high Re simulations to account for the short initial adjustment of the
scalar field in DNS.26 From this simulation data, the decay rate of the scalar correlation coefficients
can be scaled as μ ∼ Re−0.5 which is close to the ρ−1dρ/dt ∼ Re−0.3scaling suggested by Fox.6 It
is clear from the results that the model correctly predicts a reduced rate of scalar decorrelation with
increasing Reynolds number; which of course is indicative of the fact that differential diffusion is
weaker at higher Reynolds number.

It is worthwhile to note the mechanism by which decorrelation of Y ∗
I and Y ∗

I I is achieved in the
model. The principles of MMC allow us to enforce the desirable decorelation rate on the simulated
scalars without altering scalar values during mixing or adding any false source terms that can
compromise the conservative properties of the model. The scalars simply follow the decorrelation
properties directly enforced on the reference variables ζ I and ζII. The model directly controls
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FIG. 8. Evolution of the cross-correlation coefficient ρI,II between two scalars (ScI = 1, ScII = 0.25) for three different
Reynolds numbers. Symbols denote DNS data of Yeung and Luo26 while solid lines denote predictions by the MMC model
with two reference variables.
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FIG. 9. Evolution of the cross-correlation coefficients ρI, II and ρ
ζ
I,I I versus normalized time.

ρ
ζ

I,I I , the cross-correlation coefficient between two reference variables ζ I and ζII. Figure 8 shows
the evolution of both cross-correlation coefficients against normalized time for the case (ScI = 1,
ScII = 0.25) with μ = 5 × 10−5. The two values are closely aligned but as the inset figure taken at
57 eddy turn-over times shows ρ

ζ

I,I I does have some scattering around ρI,II.

IV. CONCLUSION

The current work focuses on spatially homogeneous effects of differential diffusion and on
their modelling within the MMC framework. First, the effects of differential diffusion are evaluated
theoretically and in comparison with published experimental and DNS data. The dissipation time
ratio is found to be proportional to Re−1/2. Second, the standard MMC model is modified to emulate
the effects of differential diffusion.

The MMC mixing model is used to account for two important differential diffusion effects
by using the reference variable concept. The difference in variance decay rates of two scalars
with different diffusivities, which is the primary effect that is desired in practical simulations of
differential diffusion, is modeled by using MMC with one reference variable. The concept of side-
stepping which leads to an increase in the mixing window is discussed and shown to be a practical
and effective approach for modeling differential decay rates without need for a second reference
variable. In this one reference variable MMC model the key parameter for controlling the difference
in scalar decay rates have been linked to the ratio of the physical dissipation time scales. The
second model, MMC with two reference variables, illustrates MMC’s capability of modeling the
more refined process of scalar decorrelation due to differential diffusion, while at the same time
continued to accurately predict the difference in variance decay rates. By enforcing the appropriate
correlation rates on two stochastically independent reference variables, the required decorrelation
characteristics are automatically enforced by MMC on the simulated scalars. This is done without
compromising integrality and universality of the mixing operator. The models are validated against
DNS data for joint mixing of two scalars and the level of agreement is very good. In line with
the theoretical developments, the models are also found to reflect correctly the Reynolds numbers
dependence of the differential diffusion.

Future work will focus on the application of the new models for inhomogeneous shear flows.
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