11,377 research outputs found
Numerical Simulations of Mass Transfer in Binaries with Bipolytropic Components
We present the first self-consistent, three dimensional study of hydrodynamic
simulations of mass transfer in binary systems with bipolytropic (composite
polytropic) components. In certain systems, such as contact binaries or during
the common envelope phase, the core-envelope structure of the stars plays an
important role in binary interactions. In this paper, we compare mass transfer
simulations of bipolytropic binary systems in order to test the suitability of
our numerical tools for investigating the dynamical behaviour of such systems.
The initial, equilibrium binary models possess a core-envelope structure and
are obtained using the bipolytropic self-consistent field technique. We conduct
mass transfer simulations using two independent, fully three-dimensional,
Eulerian codes - Flow-ER and Octo-tiger. These hydrodynamic codes are compared
across binary systems undergoing unstable as well as stable mass transfer, and
the former at two resolutions. The initial conditions for each simulation and
for each code are chosen to match closely so that the simulations can be used
as benchmarks. Although there are some key differences, the detailed comparison
of the simulations suggests that there is remarkable agreement between the
results obtained using the two codes. This study puts our numerical tools on a
secure footing, and enables us to reliably simulate specific mass transfer
scenarios of binary systems involving components with a core-envelope
structure
A Numerical Method for Generating Rapidly Rotating Bipolytropic Structures in Equilibrium
We demonstrate that rapidly rotating bipolytropic (composite polytropic)
stars and toroidal disks can be obtained using Hachisu's self consistent field
technique. The core and the envelope in such a structure can have different
polytropic indices and also different average molecular weights. The models
converge for high cases, where T is the kinetic energy and W is the
gravitational energy of the system. The agreement between our numerical
solutions with known analytical as well as previously calculated numerical
results is excellent. We show that the uniform rotation lowers the maximum core
mass fraction or the Schnberg-Chandrasekhar limit for a
bipolytropic sequence. We also discuss the applications of this method to
magnetic braking in low mass stars with convective envelopes
Fluctuation Spectrum from a Scalar-Tensor Bimetric Gravity Theory
Predictions of the CMB spectrum from a bimetric gravity theory
(gr-qc/0101126) are presented. The initial inflationary period in BGT is driven
by a vanishingly small speed of gravitational waves v_g in the very early
universe. This initial inflationary period is insensitive to the choice of
scalar field potential and initial values of the scalar field. After this
initial period of inflation, v_g will increase rapidly and the effects of a
potential will become important. We show that a quadratic potential introduced
into BGT yields an approximately flat spectrum with inflation parameters:
n_s=0.98, n_t=-0.027, alpha_s=-3.2e-4 and alpha_t=-5.0e-4, with r >= 0.014.Comment: 14 pages, uses amsmath, amssym
SPIRAL Phase A: A Prototype Integral Field Spectrograph for the AAT
We present details of a prototype fiber feed for use on the Anglo-Australian
Telescope (AAT) that uses a dedicated fiber-fed medium/high resolution (R >
10000) visible-band spectrograph to give integral field spectroscopy (IFS) of
an extended object. A focal reducer couples light from the telescope to the
close-packed lenslet array and fiber feed, allowing the spectrograph be used on
other telescopes with the change of a single lens. By considering the
properties of the fibers in the design of the spectrograph, an efficient design
can be realised, and we present the first scientific results of a prototype
spectrograph using a fiber feed with 37 spatial elements, namely the detection
of Lithium confirming a brown dwarf candidate and IFS of the supernova remnant
SN1987A.Comment: 41 pages, 15 figures, 3 tables; accepted by PAS
Direct imaging of SiO2 thickness variation on Si using modified atomic force microscope
Journal ArticleFabrication techniques of metal-oxide-semiconductor ~(MOS) transistors have been improved very rapidly during the last several decades. With this trend, scaling down of MOS transistors is necessary to improve the speed of circuits and the packing density of discrete devices. Both lateral and vertical dimensions of unit devices are reduced to ascertain better electrical characteristics of devices
Direct imaging of a massive dust cloud around R Coronae Borealis
We present recent polarimetric images of the highly variable star R CrB using
ExPo and archival WFPC2 images from the HST. We observed R CrB during its
current dramatic minimum where it decreased more than 9 mag due to the
formation of an obscuring dust cloud. Since the dust cloud is only in the
line-of-sight, it mimics a coronograph allowing the imaging of the star's
circumstellar environment. Our polarimetric observations surprisingly show
another scattering dust cloud at approximately 1.3" or 2000 AU from the star.
We find that to obtain a decrease in the stellar light of 9 mag and with 30% of
the light being reemitted at infrared wavelengths (from R CrB's SED) the grains
in R CrB's circumstellar environment must have a very low albedo of
approximately 0.07%. We show that the properties of the dust clouds formed
around R CrB are best fitted using a combination of two distinct populations of
grains size. The first are the extremely small 5 nm grains, formed in the low
density continuous wind, and the second population of large grains (~0.14
{\mu}m) which are found in the ejected dust clouds. The observed scattering
cloud, not only contains such large grains, but is exceptionally massive
compared to the average cloud.Comment: 8 pages, 7 figures published in A&
- …