480 research outputs found

    Inconsistencies of interannual variability and trends in long-term satellite leaf area index products

    Full text link
    Understanding the long-term performance of global satellite leaf area index (LAI) products is important for global change research. However, few effort has been devoted to evaluating the long-term time-series consistencies of LAI products. This study compared four long-term LAI products (GLASS, GLOBMAP, LAI3g, and TCDR) in terms of trends, interannual variabilities, and uncertainty variations from 1982 through 2011. This study also used four ancillary LAI products (GEOV1, MERIS, MODIS C5, and MODIS C6) from 2003 through 2011 to help clarify the performances of the four long-term LAI products. In general, there were marked discrepancies between the four long-term LAI products. During the pre-MODIS period (1982-1999), both linear trends and interannual variabilities of global mean LAI followed the order GLASS>LAI3g>TCDR>GLOBMAP. The GLASS linear trend and interannual variability were almost 4.5 times those of GLOBMAP. During the overlap period (2003-2011), GLASS and GLOBMAP exhibited a decreasing trend, TCDR no trend, and LAI3g an increasing trend. GEOV1, MERIS, and MODIS C6 also exhibited an increasing trend, but to a much smaller extent than that from LAI3g. During both periods, the R2 of detrended anomalies between the four long-term LAI products was smaller than 0.4 for most regions. Interannual variabilities of the four long-term LAI products were considerably different over the two periods, and the differences followed the order GLASS>LAI3g>TCDR>GLOBMAP. Uncertainty variations quantified by a collocation error model followed the same order. Our results indicate that the four long-term LAI products were neither intraconsistent over time nor interconsistent with each other. These inconsistencies may be due to NOAA satellite orbit changes and MODIS sensor degradation. Caution should be used in the interpretation of global changes derived from the four long-term LAI products

    Estimation spatialisée de la biomasse et des besoins en eau des cultures à l'aide de données satellitales à hautes résolutions spatiale et temporelle : application aux agrosystèmes du sud-ouest de la France

    Get PDF
    Il existe un lien étroit entre les agrosystèmes et les cycles du carbone (processus de séquestration du carbone dans les sols) et de l'eau (systèmes de production par irrigation). Cette thèse contribue à l'analyse et la validation des méthodes de quantification, sur de grandes surfaces, de la biomasse (cycle du carbone) et des besoins en eau (cycle de l'eau) des agrosystèmes. Pour répondre à cet objectif, des données de télédétection sont assimilées dans un modèle de cultures, SAFY (Simple Algorithm For Yield Estimate), au travers d'une variable biophysique clés, le GAI (Green area index). Des méthodes d'estimation in situ (par proxy-détection) et spatialisées (par inversion de modèles de transfert radiatif) du GAI sont, tout d'abord, étudiées et validées. Les séries temporelles de GAI déterminées à partir des données de télédétection sont ensuite utilisées pour étalonner le modèle SAFY, conduisant à des estimations spatialisées de biomasse et des besoins en eau des cultures. Ces estimations sont validées par confrontation à un dispositif expérimental mis en place entre 2006 et 2010 et situé dans le sud-ouest de la France. Les cultures étudiées sont des cultures d'été non irriguées (tournesol) et irriguées (maïs, soja). Les données de télédétection utilisées pour estimer les séries temporelles de GAI sont issues du capteur Formosat-2. Ces données sont particulièrement pertinentes car elles combinent une haute résolution spatiale (8 m) et une haute fréquence temporelle (1 jour), indispensables pour le suivi des surfaces agricoles.There is a close relationship between agrosystems (or agroecosystems) and carbon (soil carbon sequestration process) and water (irrigation management systems) cycles. This PhD thesis contributes to the analysis and the validation of methods for quantification of agrosystems biomass (carbon cycle) and water needs (water cycle) over large land surfaces. To this end, remote sensing data are assimilated within a crop model, SAFY (Simple Algorithm For Yield Estimate), through a key biophysical variable, the GAI (Green area index). GAI in situ (proxy-detection) and spatialized (inversion of radiative transfer models) estimation methods are first assessed. Secondly, remote sensed time series of GAI are used for the calibration of the SAFY crop model in order to deliver spatial estimates of crop biomass and water needs. These estimations are validated, through direct comparison with an experimental system which is located in the southwest of France and run from 2006 to 2010. Studied crops are maize and soybean, which are irrigated, and also sunflower, which is non-irrigated. Remote sensing data used to estimate the time series of GAI are taken from Formosat-2 sensors. Such data are particularly relevant for the crop monitoring because they combine high spatial resolution (8 m) and high temporal frequency (1 day)

    Harmonized Landsat/Sentinel-2 Products for Land Monitoring

    Get PDF
    The Harmonized Landsat-8 and Sentinel-2 (HLS) project is a NASA initiative aiming to produce a seamless, harmonized surface reflectance record from the Operational Land Imager (OLI) and Multi-Spectral Instrument (MSI) aboard Landsat-8 and Sentinel-2 remote sensing satellites, respectively. The HLS products are based on a set of algorithms to obtain seamless products from both sensors (OLI and MSI): atmospheric correction, cloud and cloud-shadow masking, geographic co-registration and common gridding, bidirectional reflectance distribution function normalization and bandpass adjustment. As of version 1.3, the HLS v1.3 data set covers 9.12 million km2 and spans from first Landsat-8 data (2013) to present. HLS products provide near-daily surface reflectance information with a common geometric framework, and are suitable for a variety of agricultural and vegetation monitoring tasks, including analysis of crop type, condition, and phenology

    AI4Boundaries: an open AI-ready dataset to map field boundaries with Sentinel-2 and aerial photography

    Get PDF
    Field boundaries are at the core of many agricultural applications and are a key enabler for the operational monitoring of agricultural production to support food security. Recent scientific progress in deep learning methods has highlighted the capacity to extract field boundaries from satellite and aerial images with a clear improvement from object-based image analysis (e.g. multiresolution segmentation) or conventional filters (e.g. Sobel filters). However, these methods need labels to be trained on. So far, no standard data set exists to easily and robustly benchmark models and progress the state of the art. The absence of such benchmark data further impedes proper comparison against existing methods. Besides, there is no consensus on which evaluation metrics should be reported (both at the pixel and field levels). As a result, it is currently impossible to compare and benchmark new and existing methods. To fill these gaps, we introduce AI4Boundaries, a data set of images and labels readily usable to train and compare models on field boundary detection. AI4Boundaries includes two specific data sets: (i) a 10 m Sentinel-2 monthly composites for large-scale analyses in retrospect and (ii) a 1 m orthophoto data set for regional-scale analyses, such as the automatic extraction of Geospatial Aid Application (GSAA). All labels have been sourced from GSAA data that have been made openly available (Austria, Catalonia, France, Luxembourg, the Netherlands, Slovenia, and Sweden) for 2019, representing 14.8 M parcels covering 376 K km2. Data were selected following a stratified random sampling drawn based on two landscape fragmentation metrics, the perimeter/area ratio and the area covered by parcels, thus considering the diversity of the agricultural landscapes. The resulting “AI4Boundaries” dataset consists of 7831 samples of 256 by 256 pixels for the 10 m Sentinel-2 dataset and of 512 by 512 pixels for the 1 m aerial orthophoto. Both datasets are provided with the corresponding vector ground-truth parcel delineation (2.5 M parcels covering 47 105 km2), and with a raster version already pre-processed and ready to use. Besides providing this open dataset to foster computer vision developments of parcel delineation methods, we discuss the perspectives and limitations of the dataset for various types of applications in the agriculture domain and consider possible further improvements. The data are available on the JRC Open Data Catalogue: http://data.europa.eu/89h/0e79ce5d-e4c8-4721-8773-59a4acf2c9c9 (European Commission, Joint Research Centre, 2022).</p

    Hereditary kidney diseases associated with hypomagnesemia

    Get PDF
    In the kidney, a set of proteins expressed in the epithelial cells of the thick ascending loop of Henle and the distal convoluted tubule directly or indirectly play important roles in the regulation of serum magnesium levels. Magnesium reabsorption in the thick ascending loop of Henle occurs through a passive paracellular pathway, while in the distal convoluted tubule, the final magnesium concentration is established through an active transcellular pathway. The players involved in magnesium reabsorption include proteins with diverse functions including tight junction proteins, cation and anion channels, sodium chloride cotransporter, calcium-sensing receptor, epidermal growth factor, cyclin M2, sodium potassium adenosine triphosphatase subunits, transcription factors, a serine protease, and proteins involved in mitochondrial function. Mutations in the genes that encode these proteins impair their function and cause different rare diseases associated with hypomagnesemia, which may lead to muscle cramps, fatigue, epileptic seizures, intellectual disability, cardiac arrhythmias, and chronic kidney disease. The purpose of this review is to describe the clinical and genetic characteristics of these hereditary kidney diseases and the current research findings on the pathophysiological basis of these diseases

    The Sentinel-2 MSI Can Increase the Temporal Resolution of 30m Satellite-Derived LAI Estimates

    Get PDF
    The successful launch of the European Space Agency (ESA) Sentinel-2A (S2-A) on 23 June 2015 with its MultiSpectral Instrument (MSI) provides an important means to augment Earth-observation capabilities following the legacy of Landsat. After the three-month satellite commissioning campaign, the MSI onboard S-2A is performing very well (ESA, 2015). By 3 December 2015, the sensor data records have achieved provisional maturity status and have been accessed in level-1C Top-Of-Atmosphere (TOA) reflectance by the remote sensing community worldwide. Near-nadir observations by the MSI onboard S-2A and the Operational Land Imager (OLI) onboard Landsat 8 were collected during Simultaneous Nadir Overpasses as well as nearly coincident overpasses. This paper presents a processing chain using harmonized S-2A MSI and Landsat 8 OLI sensors to obtain increased temporal resolution in Leaf Area Index (LAI) estimates using the red-edge band B8A of MSI to replace the NIR band B08. Results demonstrate that LAI estimates from the MSI and OLI are comparable, and, given sufficient preprocessing for atmospheric correction and geometric rectification, can be used interchangeably to improve the frequency with which low LAI canopies can be monitored

    Machine learning for regional crop yield forecasting in Europe

    Get PDF
    Crop yield forecasting at national level relies on predictors aggregated from smaller spatial units to larger ones according to harvested crop areas. Such crop areas come from land cover maps or reported statistics, both of which can have errors and uncertainties. Sub-national or regional crop yield forecasting minimizes the propagation of these errors to some extent. In addition, regional forecasts provide added value and insights to stakeholders on regional differences within a country, which would otherwise compensate each other at national level. We propose a crop yield forecasting approach for multiple spatial levels based on regional crop yield forecasts from machine learning. Machine learning, with its data-driven approach, can leverage larger data sizes and capture nonlinear relationships between predictors and yield at regional level. We designed a generic machine learning workflow to demonstrate the benefits of regional crop yield forecasting in Europe. To evaluate the quality and usefulness of regional forecasts, we predicted crop yields for 35 case studies, including nine countries that are major producers of six crops (soft wheat, spring barley, sunflower, grain maize, sugar beets and potatoes). Machine learning models at regional level had lower normalized root mean squared errors (NRMSE) and uncertainty than a linear trend model, with Wilcoxon p-values of 3e-7 and 2e-7 for 60 days before harvest and end of season respectively. Similarly, regional machine learning forecasts aggregated to national level had lower NRMSEs than forecasts from an operational system in 18 out of 35 cases 60 days before harvest, with a Wilcoxon p-value of 0.95 indicating similar performance. Our models have room for improvement, especially during extreme years. Nevertheless, regional crop yield forecasts from machine learning and aggregated national forecasts provide a consistent forecasting method across spatial levels and insights from regional differences to support important policy decisions

    Harmonized Landsat/Sentinel-2 Reflectance Products for Land Monitoring (Invited)

    Get PDF
    Many land applications require more frequent observations than can be obtained from a single 'Landsat class' sensor. Agricultural monitoring, inland water quality assessment, stand-scale phenology, and numerous other applications all require near-daily imagery at better than 1ha resolution. Thus the land science community has begun expressing a desire for a '30-meter MODIS' global monitoring capability. One cost-effective way to achieve this goal is via merging data from multiple, international observatories into a single virtual constellation. The Harmonized Landsat/Sentinel-2 (HLS) project has been working to generate a seamless surface reflectance product by combining observations from USGS/NASA Landsat-8 and ESA Sentinel-2. Harmonization in this context requires a series of radiometric and geometric transforms to create a single surface reflectance time series agnostic to sensor origin. Radiometric corrections include a common atmospheric correction using the Landsat-8 LaSRC/6S approach, a simple BRDF adjustment to constant solar and nadir view angle, and spectral bandpass adjustments to fit the Landsat-8 OLI reference. Data are then resampled to a consistent 30m UTM grid, using the Sentinel-2 global tile system. Cloud and shadow masking are also implemented. Quality assurance (QA) involves comparison of the output 30m HLS products with near-simultaneous MODIS nadir-adjusted observations. Prototoype HLS products have been processed for approximately 7% of the global land area using the NASA Earth Exchange (NEX) compute environment at NASA Ames, and can be downloaded from the HLS web site (https://hls.gsfc.nasa.gov). A wall-to-wall North America data set is being prepared for 2018. This talk will review the objectives and status of the HLS project, and illustrate applications of high-density optical time series data for agriculture and ecology. We also discuss lessons learned from HLS in the general context of implementing virtual constellations

    Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    Get PDF
    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transforma­ tion (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with dis­ charge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-201O dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar,and fertilizer amount were used as input variables.Con­tinuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes(around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity
    • …
    corecore