13 research outputs found

    Hotspots of Unseen Fishing Vessels Illuminate Areas of Concern for Illegal, Unreported and Unregulated Fishing

    Get PDF
    Illegal, unreported, and unregulated (IUU) fishing incurs an annual cost of up to US$25 billion in economic losses, results in substantial losses of aquatic life, and has been linked to human rights violations. Vessel tracking data from the automatic identification system (AIS) are powerful tools for combating IUU, yet AIS transponders can be disabled, reducing its efficacy as a surveillance tool. We present a global dataset of AIS disabling in commercial fisheries, which obscures up to 6% (\u3e4.9 M hours) of vessel activity. Disabling hot spots were located near the exclusive economic zones (EEZs) of Argentina and West African nations and in the Northwest Pacific, all regions of IUU concern. Disabling was highest near transshipment hot spots and near EEZ boundaries, particularly contested ones. We also found links between disabling and location hiding from competitors and pirates. These inferences on where and why activities are obscured provide valuable information to improve fisheries management

    Analysis of the global shipping traffic for the feasibility of a structural recovery program of Argo floats

    Get PDF
    The Argo observation network is made up of approximately 4,000 drifting floats, which provide valuable information about the ocean and its role in the climate system. Each one of these floats work in continuous cycles, until their batteries run out. Due to its importance in operational forecasting and climate research, the Argo community continually assesses the status of the sensors mounted on each of the floats. Recovering floats would offer a great opportunity to gain insight into sensor performance and stability, although the economic and environmental costs of dedicating a ship exclusively to recover Argo floats make it unsustainable. In this work, the potential of world shipping traffic as float retrievers has been evaluated through an analysis of encounters based on the Automatic Identification System (AIS) of ships and the location of Argo floats in the years 2019 and 2020. About 18,500 and 28,500 encounters happened for both years, respectively. The Mediterranean Sea hosted the most encounters, and fishing ships were the most suitable type of ship aimed for potential recoveries. A total of 298 and 373 floats interacted with the world shipping traffic in favorable weather conditions in 2019 and 2020, respectively, a figure equivalent to 25% of the annual replacement rate of the Argo network. The same approach was applied to 677 floats affected by abrupt salinity drift (ASD), an issue that has recently come to the attention of the Argo community. It turned out that 59 and 103 ASD-affected floats interacted with ships of opportunity in both years

    Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Womersley, F. C., Humphries, N. E., Queiroz, N., Vedor, M., da Costa, I., Furtado, M., Tyminski, J. P., Abrantes, K., Araujo, G., Bach, S. S., Barnett, A., Berumen, M. L., Bessudo Lion, S., Braun, C. D., Clingham, E., Cochran, J. E. M., de la Parra, R., Diamant, S., Dove, A. D. M., Dudgeon, C. L., Erdmann, M. V., Espinoza, E., Fitzpatrick, R., González Cano, J., Green, J. R., Guzman, H. M., Hardenstine, R., Hasan, A., Hazin, F. H. V., Hearn, A. R., Hueter, R. E., Jaidah, M. Y., Labaja, J., Ladinol, F., Macena, B. C. L., Morris Jr., J. J., Norman, B. M., Peñaherrera-Palmav, C., Pierce, S. J., Quintero, L. M., Ramırez-Macías, D., Reynolds, S. D., Richardson, A. J., Robinson, D. P., Rohner, C. A., Rowat, D. R. L., Sheaves, M., Shivji, M. S., Sianipar, A. B., Skomal, G. B., Soler, G., Syakurachman, I., Thorrold, S. R., Webb, D. H., Wetherbee, B. M., White, T. D., Clavelle, T., Kroodsma, D. A., Thums, M., Ferreira, L. C., Meekan, M. G., Arrowsmith, L. M., Lester, E. K., Meyers, M. M., Peel, L. R., Sequeira, A. M. M., Eguıluz, V. M., Duarte, C. M., & Sims, D. W. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 119(20), (2022): e2117440119, https://doi.org/10.1073/pnas.2117440119.Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.Funding for data analysis was provided by the UK Natural Environment Research Council (NERC) through a University of Southampton INSPIRE DTP PhD Studentship to F.C.W. Additional funding for data analysis was provided by NERC Discovery Science (NE/R00997/X/1) and the European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH) to D.W.S., Fundação para a Ciência e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01–0145-FEDER-028855, and MARINFO–NORTE-01–0145-FEDER-000031 (funded by Norte Portugal Regional Operational Program [NORTE2020] under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund–ERDF) to N.Q. FCT also supported N.Q. (CEECIND/02857/2018) and M.V. (PTDC/BIA-COM/28855/2017). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship. All tagging procedures were approved by institutional ethical review bodies and complied with all relevant ethical regulations in the jurisdictions in which they were performed. Details for individual research teams are given in SI Appendix, section 8. Full acknowledgments for tagging and field research are given in SI Appendix, section 7. This research is part of the Global Shark Movement Project (https://www.globalsharkmovement.org)

    Marine seafood production via intense exploitation and cultivation in China: Costs, benefits, and risks.

    No full text
    Identifying strategies to maintain seafood supply is central to global food supply. China is the world's largest producer of seafood and has used a variety of production methods in the ocean including domestic capture fisheries, aquaculture (both freshwater and marine), stock enhancement, artificial reef building, and distant water fisheries. Here we survey the outcomes of China's marine seafood production strategies, with particular attention paid to the associated costs, benefits, and risks. Benefits identified include high production, low management costs, and high employment, but significant costs and risks were also identified. For example, a majority of fish in China's catches are one year-old, ecosystem and catch composition has changed relative to the past, wild and farmed stocks can interact both negatively and positively, distant water fisheries are a potential source of conflict, and disease has caused crashes in mariculture farms. Reforming China's wild capture fisheries management toward strategies used by developed nations would continue to shift the burden of production to aquaculture and could have negative social impacts due to differences in fishing fleet size and behavior, ecosystem structure, and markets. Consequently, China may need to develop novel management methods in reform efforts, rather than rely on examples from other large seafood producing countries. Improved accounting of production from fisheries and aquaculture, harmonization and centralization of historical data sets and systematic scientific surveys would improve the knowledge base for planning and evaluating future reform

    Fine-scale associations between wandering albatrosses and fisheries in the southwest Atlantic Ocean

    No full text
    Bycatch is a conservation concern for marine biodiversity, including seabirds. Analyses of spatio-temporal overlap are an important tool for identifying areas and periods where birds are most at risk, but until recently were only possible at coarse scales using aggregated data on fishing effort. Here, we integrated data from loggers that record GPS positions of birds at sea and scan the surroundings to detect vessel-radar transmissions, with the positions of fishing vessels obtained from the automatic identification system, to identify areas, gear types and flag states representing most bycatch risk for wandering albatrosses (Diomedea exulans) of different life-history stages and sexes. We recorded 157 foraging trips of adult breeders, and 34 tracks of sabbatical breeders, 29 immatures and 31 juveniles. Overall, 55 % of birds encountered and 43 % of birds visited fishing vessels (i.e. were within 30 km and 5 km, respectively). Fine-scale overlap was particularly high for breeders during incubation and post-guard chick-rearing when birds travelled to the Patagonian Shelf break. Only 23 % of all encounters involved vessel visits. Our study found the greatest overlap was with set (demersal) longliners, particularly those from South Korea but also including the Falkland Islands, United Kingdom and Chile, and to lower extents, trawlers flagged to Argentina and Uruguay, and drifting (pelagic) longliners flagged to Brazil, Portugal and Taiwan. These fleets vary greatly in terms of bycatch rates. This study highlights the importance of covering the full range of life-history stages, and the advantages of vessel-detecting loggers and fine-scale analyses for improving risk assessments

    Hot spots of unseen fishing vessels

    No full text
    Illegal, unreported, and unregulated (IUU) fishing incurs an annual cost of up to US$25 billion in economic losses, results in substantial losses of aquatic life, and has been linked to human rights violations. Vessel tracking data from the automatic identification system (AIS) are powerful tools for combating IUU, yet AIS transponders can be disabled, reducing its efficacy as a surveillance tool. We present a global dataset of AIS disabling in commercial fisheries, which obscures up to 6% (>4.9 M hours) of vessel activity. Disabling hot spots were located near the exclusive economic zones (EEZs) of Argentina and West African nations and in the Northwest Pacific, all regions of IUU concern. Disabling was highest near transshipment hot spots and near EEZ boundaries, particularly contested ones. We also found links between disabling and location hiding from competitors and pirates. These inferences on where and why activities are obscured provide valuable information to improve fisheries management

    Protecting marine mammals, turtles, and birds by rebuilding global fisheries

    No full text
    Reductions in global fishing pressure are needed to end overfishing of target species and maximize the value of fisheries. We ask whether such reductions would also be sufficient to protect non–target species threatened as bycatch. We compare changes in fishing pressure needed to maximize profits from 4713 target fish stocks—accounting for >75% of global catch—to changes in fishing pressure needed to reverse ongoing declines of 20 marine mammal, sea turtle, and seabird populations threatened as bycatch. We project that maximizing fishery profits would halt or reverse declines of approximately half of these threatened populations. Recovering the other populations would require substantially greater effort reductions or targeting improvements. Improving commercial fishery management could thus yield important collateral benefits for threatened bycatch species globally
    corecore