139 research outputs found

    Growth and crown morphological responses of boreal conifer seedlings and saplings with contrasting shade tolerace to a gradient of light and height

    Get PDF
    The effects of gradients in light levels and tree height on growth and crown attributes of six conifer species were studied in eastern and western Canada. Three conifers were studied in British Columbia (Abies lasiocarpa (Hook.) Nutt., Picea glauca (Moench) Voss x Picea engelmannii Parry ex Engelm., and Pinus contorta Dougl. ex Loud. var. latifolia Engelm.), and three in Quebec (Abies balsamea (L.) Mill., Picea glauca, and Pinus banksiana Lamb.). For several growth and morphological parameters, conifers reacted strongly to both an increase in light and tree height. Significant or nearly significant interactions between light classes and height were found for height and diameter growth of most species as well as for many crown attributes for both Abies and Picea. These interactions usually indicated that growth or morphological changes occurred with increasing height from a certain light level. Within a single genus, both eastern and western tree species showed the same overall acclimation to light and height. As generally reported, Pinus species showed less variation in growth and morphological responses to light than Abies and Picea species

    A VLSI sensory-motor architecture for an obstacle avoidance task in an unstructured environment

    Get PDF
    Obstacle avoidance is a difficult task for autonomous robots. To overcome limitations of traditional computer vision systems, some robots have made use of efficient VLSI sensory-motor systems. However, because the processing in these systems is at the pixel level, it is difficult to achieve algorithms that can deal with real-world, unstructured environments. To make these VLSI sensory-motor systems more widely applicable, new architectures and strategies are needed. This thesis presents an architecture for a VLSI sensory-motor system designed for obstacle avoidance by a mobile robot in an unstructured environment. Drawing inspiration from biology and behavior-based robotics, the development of the architecture is guided by an emphasis on the requirements of an obstacle avoidance behavior for a mobile robot. The architecture incorporates features which enable it to deal with unstructured environments. A special foveation and weighting scheme are used to facilitate the detection of real-world objects. The sensory and motor maps of the system are aligned to relate features in the visual field to a left and a right control signal. The effectiveness of the architecture is demonstrated through computer simulation. A model of a sensory-motor system based on the architecture is used to create a realistic looking virtual environment simulator. Simulation results show that such a system is capable of efficient obstacle avoidance in an unstructured environment, while using only a small number of simple operations connected hierarchically, potentially leading to an implementation with small pixel

    A space-variant architecture for active visual target tracking

    Get PDF
    An active visual target tracking system is an automatic feedback control system that can track a moving target by controlling the movement of a camera or sensor array. This kind of system is often used in applications such as automatic surveillance and human-computer interaction. The design of an effective target tracking system is challenging because the system should be able to precisely detect the fine movements of a target while still being able to detect a large range of target velocities. Achieving this in a computationally efficient manner is difficult with a conventional system architecture. This thesis presents an architecture for an active visual target tracking system based on the idea of space-variant motion detection. In general, space-variant imaging involves the use of a non-uniform distribution of sensing elements across a sensor array, similar to how the photoreceptors in the human eye are not evenly distributed. In the proposed architecture, space-variant imaging is used to design an array of elementary motion detectors (EMDs). The EMDs are tuned in such a way as to make it possible to detect motion both precisely and over a wide range of velocities in a computationally efficient manner. The increased ranges are achieved without additional computational costs beyond the basic mechanism of motion detection. The technique is general in that it can be used with different motion detection mechanisms and the overall space-variant structure can be varied to suit a particular application. The design of a tracking system based on a space-variant motion detection array is a difficult task. This thesis presents a method of analysis and design for such a tracking system. The method of analysis consists of superimposing a phase-plane plot of the continuous-time dynamics of the tracking system onto a map of the detection capabilities of the array of EMDs. With the help of this 'sensory-motor' plot, a simple optimization algorithm is used to design a tracking system to meet particular objectives for settling time, steady-state error and overshoot. Several simulations demonstrate the effectiveness of the method. A complete active vision system is implemented and a set of target tracking experiments are performed. Experimental results support the effectiveness of the approac

    Morphological indicators of growth response of coniferous advance regeneration to overstorey removal in the boreal forest

    Get PDF
    Regeneration of forest stands through the preservation of existing advance regeneration has gained considerable interest in various regions of North America. The effectiveness of this approach relies on the capacity of regeneration to respond positively to overstory removal. Responses of advance regeneration to release is dependent on tree characteristics and site conditions interacting with the degree of physiological shock caused by the sudden change in environmental conditions. This paper presents a review of the literature describing the relationships between morphological indicators and the advance regeneration response to canopy removal. It focuses primarily on the following species: jack pine (Pinus banksiana Lamb.), lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.), black spruce (Picea mariana (Mill.) B.S.P.), interior spruce (Picea glauca x engelmannii), white spruce (Picea glauca (Moench) Voss), balsam fir (Abies balsamea (L.) Mill.), and subalpine fir (Abies lasiocarpa (Hook.) Nutt). Pre-release height growth has been found to be a good indicator of post-release response for many species. Live-crown ratio also appears to be a good indicator of vigour for shade-tolerant species. The ratio of leader length to length of the longest lateral at the last whorl could serve to describe the degree of suppression before harvest for shade-tolerant species. Number of nodal and internodal branches or buds has been found to be related with vigour for many species. Logging damage has been shown to be an important determinant of seedling response to overstory removal. In contrast, height/diameter ratio has limited value for predicting response to release since it varies with site, species and other factors. No clear relationship between age, height at release and response to release could be demonstrated. This paper also suggests the use of combined indicators and critical threshold values for these indicators

    Functional ecology of advance regeneration in relation to light in boreal forests

    Get PDF
    This paper reviews aspects of the functional ecology of naturally established tree seedlings in the boreal forests of North America with an emphasis on the relationship between light availability and the growth and survival of shade tolerant conifers up to pole size. Shade tolerant conifer species such as firs and spruces tend to have a lower specific leaf mass, photosynthetic rate at saturation, live crown ratio, STAR (shoot silhouette area to total needle surface area ratio), and root to shoot ratio than the shade intolerant pines. The inability of intolerant species such as the pines and aspen to survive in shade appears to be mainly the result of characteristics at the shoot, crown, and whole-tree levels and not at the leaf level. Although firs and spruces frequently coexist in shaded understories, they do not have identical growth patterns and crown architectures. We propose a simple framework based on the maximum height that different tree species can sustain in shade, which may help managers determine the timing of partial or complete harvests. Consideration of these functional aspects of regeneration is important to the understanding of boreal forest dynamics and can be useful to forest managers seeking to develop or assess novel silvicultural systems

    Histological and cytological imaging using Fourier ptychographic microscopy

    Get PDF
    Structural imaging using light microscopy is a cornerstone of histology and cytology. However, the utility of the optical microscope for diagnostic imaging is limited by the fundamental tradeoff between the field of view and spatial resolution and a reliance on exogenous dyes to generate sufficient image contrast. Fourier Ptychographic Microscopy (FPM) is a complex imaging modality with the potential to overcome these limitations by recovering high-resolution images of sample amplitude and phase from a set of low-resolution raw images captured under inclined illumination. In this article we explore the application of FPM to clinical imaging using a simple, low-cost FPM system and simulated and experimental data to explore the influence of both image acquisition parameters and hardware configuration on image quality and imaging throughput. The practical performance of the method is investigated by imaging peripheral blood films and histological tissue sections. We find that, at the cost of increased computational complexity, FPM increases the information capture capacity of the optical microscope significantly, allowing label-free examination and quantification of features such as tissue and cell morphology over large sample areas

    Experimental and theoretical study of line mixing in methane spectra. IV. Influence of the temperature and of the band

    Get PDF
    The infrared bands line-mixing effects of methane perturbed by nitrogen were discussed at different pressures. The spectral shapes of the ν2, ν4 and ν3 bands were compared at room temperature while the ν3 region was employed for the investigation of thermal effects. The effects of collisions in the ν4 region's spectra were calculated at the room temperature. The Coriolis coupling between ν2 and ν4 vibrational states resulted in the failure of evolution modeling with increasing pressure of absorption.© 2000 American Institute of PhysicsPeer Reviewe

    Linking bioavailability and toxicity changes of complex chemicals mixture to support decision making for remediation endpoint of contaminated soils

    Get PDF
    A six-month laboratory scale study was carried out to investigate the effect of biochar and compost amendments on complex chemical mixtures of tar, heavy metals and metalloids in two genuine contaminated soils. An integrated approach, where organic and inorganic contaminants bioavailability and distribution changes, along with a range of microbiological indicators and ecotoxicological bioassays, was used to provide multiple lines of evidence to support the risk characterisation and assess the remediation end-point. Both compost and biochar amendment (p = 0.005) as well as incubation time (p = 0.001) significantly affected the total and bioavailable concentrations of the total petroleum hydrocarbons (TPH) in the two soils. Specifically, TPH concentration decreased by 46% and 30% in Soil 1 and Soil 2 amended with compost. These decreases were accompanied by a reduction of 78% (Soil 1) and 6% (Soil 2) of the bioavailable hydrocarbons and the most significant decrease was observed for the medium to long chain aliphatic compounds (EC16–35) and medium molecular weight aromatic compounds (EC16–21). Compost amendment enhanced the degradation of both the aliphatic and aromatic fractions in the two soils, while biochar contributed to lock the hydrocarbons in the contaminated soils. Neither compost nor biochar affected the distribution and behaviour of the heavy metals (HM) and metalloids in the different soil phases, suggesting that the co-presence of heavy metals and metalloids posed a low risk. Strong negative correlations were observed between the bioavailable hydrocarbon fractions and the ecotoxicological assays suggesting that when bioavailable concentrations decreased, the toxicity also decreased. This study showed that adopting a combined diagnostic approach can significantly help to identify optimal remediation strategies and contribute to change the over-conservative nature of the current risk assessments thus reducing the costs associated with remediation endpoint

    Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species

    Get PDF
    • Here, we tested two hypotheses: shading increases light interception efficiency (LIE) of broadleaved tree seedlings, and shade-tolerant species exhibit larger LIEs than do shade-intolerant ones. The impact of seedling size was taken into account to detect potential size-independent effects on LIE. LIE was defined as the ratio of mean light intercepted by leaves to light intercepted by a horizontal surface of equal area. • Seedlings from five species differing in shade tolerance (Acer saccharum, Betula alleghaniensis, A. pseudoplatanus, B. pendula, Fagus sylvatica) were grown under neutral shading nets providing 36, 16 and 4% of external irradiance. Seedlings (1- and 2-year-old) were three-dimensionally digitized, allowing calculation of LIE. • Shading induced dramatic reduction in total leaf area, which was lowest in shade-tolerant species in all irradiance regimes. Irradiance reduced LIE through increasing leaf overlap with increasing leaf area. There was very little evidence of significant size-independent plasticity of LIE. • No relationship was found between the known shade tolerance of species and LIE at equivalent size and irradiance

    Mucolipidosis II : a single causal mutation in the N-acetylglucosamine-1-phosphotransferase gene (GNPTAB) in a French Canadian founder population

    Get PDF
    Mucolipidosis (ML) II (I-cell disease) is a lysosomal storage disorder caused by a deficiency of UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. MLII is an autosomal recessive disease with a carrier rate estimated at 1/39 in Saguenay-Lac-Saint-Jean (SLSJ) (Quebec, Canada), which is the highest frequency documented worldwide. To identify the causing mutation, we sequenced GNPTAB exons in 27 parents of 16 MLII-deceased children from the SLSJ region as obligatory and potential carriers. We also performed a genealogical reconstruction for each parent to evaluate consanguinity levels and genetic contribution of ancestors. Our goal was to identify which parameters could explain the high MLII frequency observed in the SLSJ population. A single mutation (c.3503_3504delTC) was found in all obligatory carriers. In addition, 11 apparent polymorphisms were identified. The mutation was not detected in genomic DNA of 50 unrelated controls. Genealogical data show six founders (three couples) with a higher probability of having introduced the mutation in the population. The frequency of the mutation was increased as a consequence of this founder effect and of the resulting population structure. We suggest that c.3503_3504delTC is the allele causing MLII in the SLSJ population, and its high carrier rate is most likely explained by a founder effect
    • …
    corecore