526 research outputs found
Program for computing partial pressures from residual gas analyzer data
A computer program for determining the partial pressures of various gases from residual-gas-analyzer data is given. The analysis of the ion currents of 18 m/e spectrometer peaks allows the determination of 12 gases simultaneously. Comparison is made to ion-gage readings along with certain other control information. The output data are presented in both tabular and graphical form
Continuity of the von Neumann entropy
A general method for proving continuity of the von Neumann entropy on subsets
of positive trace-class operators is considered. This makes it possible to
re-derive the known conditions for continuity of the entropy in more general
forms and to obtain several new conditions. The method is based on a particular
approximation of the von Neumann entropy by an increasing sequence of concave
continuous unitary invariant functions defined using decompositions into finite
rank operators. The existence of this approximation is a corollary of a general
property of the set of quantum states as a convex topological space called the
strong stability property. This is considered in the first part of the paper.Comment: 42 pages, the minor changes have been made, the new applications of
the continuity condition have been added. To appear in Commun. Math. Phy
A continuous source of translationally cold dipolar molecules
The Stark interaction of polar molecules with an inhomogeneous electric field
is exploited to select slow molecules from a room-temperature reservoir and
guide them into an ultrahigh vacuum chamber. A linear electrostatic quadrupole
with a curved section selects molecules with small transverse and longitudinal
velocities. The source is tested with formaldehyde (H2CO) and deuterated
ammonia (ND3). With H2CO a continuous flux is measured of approximately 10^9/s
and a longitudinal temperature of a few K. The data are compared with the
result of a Monte Carlo simulation.Comment: 4 pages, 4 figures v2: small changes in the abstract, text and
references. Figures 1 & 2 regenerated to prevent errors in the pd
Corporation tax as a problem of MNC organisational circuits: The case for unitary taxation
The tax practices of multinational corporations have become a matter of significant public and political concern. The underlying issues are rooted in the capacity of multinational corporations (MNCs) to construct organisational circuits that shift where sales, revenue and profit are reported. This capacity in turn becomes a focus because of the way MNCs are treated as a series of separate entities, subject to the arm’s length principle. This has become a classic example of a system whose current form and consequences were not foreseen when the original principles were set out. The continued existence of that system owes more to specific interests and inertia than it does to the absence of a viable alternative. Unitary taxation based on formula apportionment clearly resolves the underlying issues and unitary taxation may well ultimately emerge as a new generalised basis for corporate taxation. However, for it to do so, the problems of the current system and the advantages of the alternative need to be more clearly understood within academia, business and on a societal basis. This paper is a contribution to such an understanding
Innovation and HRM : absences and politics
This article analyses the role of HRM practices in the implementation of an innovative cross-functional approach to new product development (concurrent engineering, CE) in Eurotech Industries. Contrary to CE methodology stipulations, and despite supportive conditions, HRM received scant attention in the implementation process. Organizational power and politics were clearly involved in this situation, and this article explores how their play created such HRM ‘absences’. The article builds on a four-dimensional view of power in order to provide a deeper understanding of the embedded, interdependent and political nature of HRM practice and innovation.<br /
Nanofluidic transport governed by the liquid/vapour interface
Liquid/vapour interfaces govern the behaviour of a wide range of systems but remain poorly understood, leaving ample margin for the exploitation of intriguing functionalities for applications. Here, we systematically investigate the role of liquid/vapour interfaces in the transport of water across apposing liquid menisci in osmosis membranes comprising short hydrophobic nanopores that separate two fluid reservoirs. We show experimentally that mass transport is limited by molecular reflection from the liquid/vapour interface below a certain length scale, which depends on the transmission probability of water molecules across the nanopores and on the condensation probability of a water molecule incident on the liquid surface. This fundamental yet elusive condensation property of water is measured under near-equilibrium conditions and found to decrease from 0.36 ± 0.21 at 30 °C to 0.18 ± 0.09 at 60 °C. These findings define the regime in which liquid/vapour interfaces govern nanofluidic transport and have implications for understanding mass transport in nanofluidic devices, droplets and bubbles, biological components and porous media involving liquid/vapour interfaces.Center for Clean Water and Clean Energy at MIT and KFUPM (Project R10-CW-09
Recommended from our members
HFCVD of diamond at low substrate and low filament temperatures
It has been discovered that the addition of a small amount of oxygen to the CH{sub 4} and H{sub 2} feed gas permits HFCVD of diamond at significantly lower filament and substrate temperatures. The effective O/C ratio here is much lower than that used in most studies of the oxygen effect. Careful control of the O/C and C/H ratios were found to be crucial to success. The effects of substrate and filament temperatures on growth rate and film quality were studied. Optimum conditions were found that gave reasonable growth rates ( {approximately}0.5 {mu}m/h ) with high film quality at filament temperatures below 1750{degrees}C and substrate temperatures below 600C. As a result, low temperature deposition has been realized. Power consumption can be reduced 50%, and the filament lifetime is extended indefinitely
Diamond deposition on modified silicon substrates: Making diamond atomic force microscopy tips for nanofriction experiments
Fine-crystalline diamond particles are grown on standard Si atomic force microscopy tips, using hot filament-assisted chemical vapor deposition. To optimize the conditions for diamond deposition, first a series of experiments is carried out using silicon substrates covered by point-topped pyramids as obtained by wet chemical etching. The apexes and the edges of the silicon pyramids provide favorable sites for diamond nucleation and growth. The investigation of the deposited polycrystallites is done by means of optical microscopy, scanning electron microscopy and micro-Raman spectroscopy. The resulting diamond-terminated tips are tested in ultra high vacuum using contact-mode atomic force microscope on a stepped surface of sapphire showing high stability, sharpness, and hardnes
The distortion of a cylinder with non-uniform axial heat conduction
Closed form expressions are developed for the thermoelastic curvature of the initially plane end faces of a traction free cylinder subjected to arbitrary axisymmetric heat flux, the curved surfaces being assumed insulated. The solution is developed from a potential function representation of displacement and temperature for an elastic layer. The reciprocal theorem is invoked to show that the tractions at the curved surface of the cylinder vary linearly along the axis and they are removed by superposition of biaxial bending. It is found that the curvature of the plane ends depends on the local heat flux and the mean heat flux, whilst the cylindrical face distorts into a cone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42669/1/10659_2004_Article_BF00042521.pd
- …
