Abstract

A general method for proving continuity of the von Neumann entropy on subsets of positive trace-class operators is considered. This makes it possible to re-derive the known conditions for continuity of the entropy in more general forms and to obtain several new conditions. The method is based on a particular approximation of the von Neumann entropy by an increasing sequence of concave continuous unitary invariant functions defined using decompositions into finite rank operators. The existence of this approximation is a corollary of a general property of the set of quantum states as a convex topological space called the strong stability property. This is considered in the first part of the paper.Comment: 42 pages, the minor changes have been made, the new applications of the continuity condition have been added. To appear in Commun. Math. Phy

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019