348 research outputs found

    An evolving network model with community structure

    Get PDF
    Many social and biological networks consist of communities—groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

    A Multifractal Analysis of Asian Foreign Exchange Markets

    Full text link
    We analyze the multifractal spectra of daily foreign exchange rates for Japan, Hong-Kong, Korea, and Thailand with respect to the United States Dollar from 1991 to 2005. We find that the return time series show multifractal spectrum features for all four cases. To observe the effect of the Asian currency crisis, we also estimate the multifractal spectra of limited series before and after the crisis. We find that the Korean and Thai foreign exchange markets experienced a significant increase in multifractality compared to Hong-Kong and Japan. We also show that the multifractality is stronge related to the presence of high values of returns in the series

    Emotional persistence in online chatting communities

    Get PDF
    How do users behave in online chatrooms, where they instantaneously read and write posts? We analyzed about 2.5 million posts covering various topics in Internet relay channels, and found that user activity patterns follow known power-law and stretched exponential distributions, indicating that online chat activity is not different from other forms of communication. Analysing the emotional expressions (positive, negative, neutral) of users, we revealed a remarkable persistence both for individual users and channels. I.e. despite their anonymity, users tend to follow social norms in repeated interactions in online chats, which results in a specific emotional "tone" of the channels. We provide an agent-based model of emotional interaction, which recovers qualitatively both the activity patterns in chatrooms and the emotional persistence of users and channels. While our assumptions about agent's emotional expressions are rooted in psychology, the model allows to test different hypothesis regarding their emotional impact in online communication.Comment: 34 pages, 4 main and 12 supplementary figure

    Self-organized model of cascade spreading

    Full text link
    We study simultaneous price drops of real stocks and show that for high drop thresholds they follow a power-law distribution. To reproduce these collective downturns, we propose a minimal self-organized model of cascade spreading based on a probabilistic response of the system elements to stress conditions. This model is solvable using the theory of branching processes and the mean-field approximation. For a wide range of parameters, the system is in a critical state and displays a power-law cascade-size distribution similar to the empirically observed one. We further generalize the model to reproduce volatility clustering and other observed properties of real stocks.Comment: 8 pages, 6 figure

    Scaling Laws in Human Language

    Get PDF
    Zipf's law on word frequency is observed in English, French, Spanish, Italian, and so on, yet it does not hold for Chinese, Japanese or Korean characters. A model for writing process is proposed to explain the above difference, which takes into account the effects of finite vocabulary size. Experiments, simulations and analytical solution agree well with each other. The results show that the frequency distribution follows a power law with exponent being equal to 1, at which the corresponding Zipf's exponent diverges. Actually, the distribution obeys exponential form in the Zipf's plot. Deviating from the Heaps' law, the number of distinct words grows with the text length in three stages: It grows linearly in the beginning, then turns to a logarithmical form, and eventually saturates. This work refines previous understanding about Zipf's law and Heaps' law in language systems.Comment: 6 pages, 4 figure

    From sparse to dense and from assortative to disassortative in online social networks

    Full text link
    Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.Comment: 10 pages, 7 figures and 2 table

    Popularity versus Similarity in Growing Networks

    Full text link
    Popularity is attractive -- this is the formula underlying preferential attachment, a popular explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections that nodes have follows power laws observed in many real networks. Preferential attachment has been directly validated for some real networks, including the Internet. Preferential attachment can also be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks, or duplication. Here we show that popularity is just one dimension of attractiveness. Another dimension is similarity. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which popularity preference emerges from local optimization. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    The star cluster formation history of the LMC

    Full text link
    The Large Magellanic Cloud is one of the nearest galaxies to us and is one of only few galaxies where the star formation history can be determined from studying resolved stellar populations. We have compiled a new catalogue of ages, luminosities and masses of LMC star clusters and used it to determine the age distribution and dissolution rate of LMC star clusters. We find that the frequency of massive clusters with masses M>5000 Msun is almost constant between 10 and 200 Myr, showing that the influence of residual gas expulsion is limited to the first 10 Myr of cluster evolution or clusters less massive than 5000 Msun. Comparing the cluster frequency in that interval with the absolute star formation rate, we find that about 15% of all stars in the LMC were formed in long-lived star clusters that survive for more than 10 Myr. We also find that the mass function of LMC clusters younger than 1 Gyr can be fitted by a power-law mass function with slope \alpha=-2.3, while older clusters follow a significantly shallower slope and interpret this is a sign of the ongoing dissolution of low-mass clusters. Our data shows that for ages older than 200 Myr, about 90% of all clusters are lost per dex of lifetime. The implied cluster dissolution rate is significantly faster than that based on analytic estimates and N-body simulations. Our cluster age data finally shows evidence for a burst in cluster formation about 1 Gyr ago, but little evidence for bursts at other ages.Comment: 18 pages, 6 figures, MNRAS in pres
    corecore