970 research outputs found

    A local hidden variable model of quantum correlation exploiting the detection loophole

    Get PDF
    A local hidden variable model exploiting the detection loophole to reproduce exactly the quantum correlation of the singlet state is presented. The model is shown to be compatible with both the CHSH and the CH Bell inequalities. Moreover, it bears the same rotational symmetry as spins. The reason why the model can reproduce the quantum correlation without violating the Bell theorem is that in the model the efficiency of the detectors depends on the local hidden variable. On average the detector efficiency is limited to 75%.Comment: 6 pages + 1 figure. A software producing data violating Bell inequality between two classical computers can be downloaded from http://www.gapoptique.unige.ch/News/BellSoft.as

    Optimal States for Bell inequality Violations using Quadrature Phase Homodyne Measurements

    Get PDF
    We identify what ideal correlated photon number states are to required to maximize the discrepancy between local realism and quantum mechanics when a quadrature homodyne phase measurement is used. Various Bell inequality tests are considered.Comment: 6 pages, 5 Figure

    Optical generation of hybrid entangled state via entangling single-photon-added coherent state

    Full text link
    We propose a feasible scheme to realize the optical entanglement of single-photon-added coherent state (SPACS) and show that, besides the Sanders entangled coherent state, the entangled SPACS also leads to new forms of hybrid entanglement of quantum Fock state and classical coherent state. We probe the essential difference of two types of hybrid entangled state (HES). This HES provides a novel link between the discrete- and the continuous-variable entanglement in a natural way.Comment: 6 pages, 2 figure

    Qubits from Number States and Bell Inequalities for Number Measurements

    Full text link
    Bell inequalities for number measurements are derived via the observation that the bits of the number indexing a number state are proper qubits. Violations of these inequalities are obtained from the output state of the nondegenerate optical parametric amplifier.Comment: revtex4, 7 pages, v2: results identical but extended presentation, v3: published versio

    Atom interferometer as a selective sensor of rotation or gravity

    Full text link
    In the presence of Earth gravity and gravity-gradient forces, centrifugal and Coriolis forces caused by the Earth rotation, the phase of the time-domain atom interferometers is calculated with accuracy up to the terms proportional to the fourth degree of the time separation between pulses. We considered double-loop atom interferometers and found appropriate condition to eliminate their sensitivity to acceleration to get atomic gyroscope, or to eliminate the sensitivity to rotation to increase accuracy of the atomic gravimeter. Consequent use of these interferometers allows one to measure all components of the acceleration and rotation frequency projection on the plane perpendicular to gravity acceleration. Atom interference on the Raman transition driving by noncounterpropagating optical fields is proposed to exclude stimulated echo processes which can affect the accuracy of the atomic gyroscopes. Using noncounterpropagating optical fields allows one to get a new type of the Ramsey fringes arising in the unidirectional Raman pulses and therefore centered at the two-quantum line center. Density matrix in the Wigner representation is used to perform calculations. It is shown that in the time between pulses, in the noninertial frame, for atoms with fully quantized spatial degrees of freedom, this density matrix obeys classical Liouville equations.Comment: 21 pages, 4 figures, extended references, discussion, and motivatio

    The wave nature of biomolecules and fluorofullerenes

    Full text link
    We demonstrate quantum interference for tetraphenylporphyrin, the first biomolecule exhibiting wave nature, and for the fluorofullerene C60F48 using a near-field Talbot-Lau interferometer. For the porphyrins, which are distinguished by their low symmetry and their abundant occurence in organic systems, we find the theoretically expected maximal interference contrast and its expected dependence on the de Broglie wavelength. For C60F48 the observed fringe visibility is below the expected value, but the high contrast still provides good evidence for the quantum character of the observed fringe pattern. The fluorofullerenes therefore set the new mark in complexity and mass (1632 amu) for de Broglie wave experiments, exceeding the previous mass record by a factor of two.Comment: 5 pages, 4 figure

    Entanglement with phase decoherence

    Full text link
    The system of an atom couples to two distinct optical cavities with phase decoherence is studied by making use of a dynamical algebraic method. We adopt the concurrence to characterize the entanglement between atom and cavities or between two optical cavities in the presence of the phase decoherence. It is found that the entanglement between atom and cavities can be controlled by adjusting the detuning parameter. Finally, we show that even if the atom is initially prepared in a maximally mixed state, it can also entangle the two mode cavity fields.Comment: 9 pages, 6 figures, lete

    Bell's Theorem and Chemical Potential

    Get PDF
    Chemical potential is a property which involves the effect of interaction between the components of a system, and it results from the whole system. In this paper, we argue that for two particles which have interacted via their spins and are now spatially separated, the so-called Bell's locality condition implies that the chemical potential of each particle is an individual property. Here is a point where quantum statistical mechanics and the local hidden variable theories are in conflict. Based on two distinct concepts of chemical potential, the two theories predict two different patterns for the energy levels of a system of two entangled particles. In this manner, we show how one can distinguish the non-separable features of a two-particle system.Comment: 11 pages,1 figure, To appear in J. Phy. A: Math. Gen., Special Issue: Foundations of Quantum Theor

    Solving the Einstein-Podolsky-Rosen puzzle: the origin of non-locality in Aspect-type experiments

    Full text link
    So far no mechanism is known, which could connect the two measurements in an Aspect-type experiment. Here, we suggest such a mechanism, based on the phase of a photon's field during propagation. We show that two polarization measurements are correlated, even if no signal passes from one point of measurement to the other. The non-local connection of a photon pair is the result of its origin at a common source, where the two fields acquire a well defined phase difference. Therefore, it is not actually a non-local effect in any conventional sense. We expect that the model and the detailed analysis it allows will have a major impact on quantum cryptography and quantum computation.Comment: 5 pages 1 figure. Added an analysis of quantum steering. The result is that under certain conditions the experimental result at B can be predicted if the polarization angle and the result at A are known. The paper has been accepted for publication in Frontiers of Physics. arXiv admin note: substantial text overlap with arXiv:1108.435

    A scalable optical detection scheme for matter wave interferometry

    Full text link
    Imaging of surface adsorbed molecules is investigated as a novel detection method for matter wave interferometry with fluorescent particles. Mechanically magnified fluorescence imaging turns out to be an excellent tool for recording quantum interference patterns. It has a good sensitivity and yields patterns of high visibility. The spatial resolution of this technique is only determined by the Talbot gratings and can exceed the optical resolution limit by an order of magnitude. A unique advantage of this approach is its scalability: for certain classes of nano-sized objects, the detection sensitivity will even increase significantly with increasing size of the particle.Comment: 10 pages, 4 figure
    • …
    corecore