PHYSICAL REVIEW A VOLUME 59, NUMBER 6 JUNE 1999

Optimal states for Bell-inequality violations using quadrature-phase homodyne measurements
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We identify what ideal correlated photon number states are required to maximize the discrepancy between
local realism and quantum mechanics when a quadrature homodyne phase measurement is used. Various
Bell-inequality tests are considerd&1050-294{®9)05606-1
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There has recently been active interest in tests of quantum

mechanicd 1] versus local realism in a high efficiency de- |n the quadrature-phase-amplitude basis this state has a posi-
tection limit. Several authof2—4] including ourselves have tive Wigner function. Hence it can be described as a local
considered detection schemes involving quadrature-phaggdden variable theory and thus cannot violate a Bell in-
homodyne measurements. Such schemes use strong local @guality.

cillators and hence have very high detection efficiefigly The other source of highly correlated photon number
This removes one of the current loophol€s-9] and poten-  states exists in nondegenerate parametric oscillation. In the
tially allows a strong test of quantum mechani@§] to be  |imit of very large parametric nonlinearity and high cavi-

performed. ties, a state of the forrfiL3]
The original idea of Gilchriset al.[2] was to use @ircle

or pair coherent statfl1-13 produced by nondegenerate v e fzwdﬁl ylre-it @
arametric oscillation with the pump mode adiabaticall = T rev)re
gliminated. Using highly efficientp qugdrature—phase homg— Vam?lg(2r®)Jo
dyne measurements, the Clauser-Horne strong Bell inequ
ity [14—16 could be tested in all optical regimes. A small
(approximately 1.5%) but significant theoretical violation
was found for this extremely ideal system. While the mea
photon number for the system may be Igapproximately

aJ:hn be generated. Hereis the size of the circle of the co-
herent states anlg is the zeroth order modified Bessel func-
tion. Equivalently this state can be written in the form of Eq.
n(1) with ¢, given by

1.12), the use of homodyne measurements allows a macro- p2n

scopic current to be detected. cnzm. (5)
In this article, we take an unphysical but interesting ap- "o

proach and answer the following questions. This was the state considered by Gilchesal. [2].

(1) Given that your detection scheme is a quadrature-  Gjyen the general form of known correlated number states
phase homodyne measurement, what is the optimal input Qi) " the next fundamental question that should be initially

correlated photon number state to maximize the potentialjyressed is what we mean by the Bell inequality. A number

violation? _ _ _ of Bell inequalities exist, and the particular one used depends
(2) What is the optimal Bell inequality to test? heavily on your application and experimental setup. The Bell
To begin we will restrict our attention to correlated pho-jnhequalities to be considered in this article are the Clauser-
ton number states of the form Horne[15], the spin[14], and the information-theoret{d.§]
oo Bell inequality. A detailed derivation of the various inequali-
_ ties will not be given; the reader is referred to Refs.
) n§=:o Cal ) m)- @ [15,14,18. Here we will consider only strong inequalities,

that is, inequalities where auxiliary assumptignst based
Two main sources of correlated photon number currentlyon local realismare not required. In Fig. 1 we depict a very
exist, each having its own particular form of. The most idealized setup for a general Bell-inequality experiment.
well known is simply the nondegenerate parametric amplifier Probably the most well known inequality is the Clauser-
specified by an ideal Hamiltonian of the forrh7] Horne strong Bell inequality15] given by

H=—7%yxe(ab+a'b’), 2 |Bopl <1, (6)

where € is the field amplitude of a nondepleting classical where

pump andy is proportional to the susceptibility of the me-

dium. a,b are the boson operators for the orthogonal signal , _ P11(6,¢) —P11(6", )+ P11(6,¢") + P11(0",¢")
and idler modes. After a time, the state of the system is ¢t P.(6")+Py() '
given by Eq.(1) with c, specified by W)
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with log[P(a,b)/P(a)] being the information gained &8
given the result af is known. The conditional information is

o then given byH (6| ¢). The base of the logarithm determines
Source ; the units of the informatioitbase 2 for bits, basefor nats.
iy For quantum computing purposes, this inequality should
P Result prove highly useful as it directly deals with information con-
0 tent. Several other Bell inequalities do exist, such as the

Clauser-Horne-Shimony-Holt inequalify6], but these are
not considered here due to their weaker nature. Auxiliary

FIG. 1. Schematic of a very generalized Bell experiment setup. sumptions are necessary in their derivation which onen u
After a source prepares two particles, these particles are directé® p y P P

out to the location#\ andB. At each location there is an analyzer several loopholeg7—9].
with adjustable parameterd, ¢. The particles are then detected,
resulting in a binary result “1” or “0” individually. These results

can then be used to build up the statistics necessary to test the

I. CORRELATED STATES

various Bell inequalities.

From Eg.(1) we need to find the optimal, which gives
the largest Bell-inequality violation. Before determining the

Here Py, is the probability that a “1” result occurs at each ¢ e need to briefly focus our attention on the quadrature-

analyzerA,B given 6, ¢. Similarly P, is the probability that

a “1” occurs at a detector while having no information

phase homodyne measurement.
A quadrature-phase-amplitude homodyne measurement

about the second. For many of the actual experimental corx(g) at A can be achieved by combining a signal fi¢sey

siderations an angle factorization occurs so tBaf( 6, ¢)
depends only o+ ¢. Also P,(6) andP4(¢) are indepen-
dent of 6, ¢. In this caseBy can be simplified to

_ 3Pu(4)—P1(3¢)
o 2P, '

)

wherey=0+¢dp=—0"—¢p'=6+¢' and 3p=0'+ ¢.
The second form of the Bell inequalitysometimes re-
ferred to as thespin or original Bell inequality is [14]

Bs=|E(6,¢)—E(0',¢)+E(0,¢")+E(0',¢")[<2,  (9)
where the correlation functioB( 6, ¢) is given by

E(0,¢)=P11(0,0)+Poo(0,¢) —P1o(6,0) —Poa( 0, ).
(10
Here, as discussed abowe,; is the probability that a “1”
result occurs at each analyz&rB given 0,¢. Pqyq is the
probability that a “0” result occurs at each analyz&yB,
while P1o(Pgy) is the probability that a “1” (0" ) result
occurs at the analyzek and a “0” (“1” ) at B. With the
angle factorization given above, the inequali@ can be
rewritten as

Bs=|3E(y)—E(3y)|<2. 13

Our final form of the Bell inequality to be considered in

this article was developed by Braunstein and CaM.

This classical information-theoretic Bell inequality has the

form
BinfoZ O, (12)
where

Binto=—H(60|¢) +H(6|¢") +H(o'[6)+H(0'| ).

(13
HereH (6| ¢) is given by
- P(a,b)
H(6|¢)= ;) P(a,b)log( 6 ) (14)

é) with a strong local oscillator fieldsay €) to form two
new fields given byc.=[a*+eexp(6)]/\y2. Here 6 is a
phase shift which allows the choice of particular observable
to be measured, for instance, choosthgs 0 or/2 allows

the measurement of the conjugate phase varia¥{€3 and
X(ml2), respectively. The homodyne measurement gives the
photocurrent difference as

lg=clc,—clc_=e(ae "+aTe ) =eX(6). (15

Performing a measurement on the quadrature-phase ampli-
tudeX(0) atAvyields a resulk,(8) which ranges in size and
sign. Similarly a measurement on the quadrature-phase am-
plitude X(¢) at B yields a resulix,(¢). For our state given

by Eg. (1), the probability of obtaining the result
X1(0),X5(¢) is simply
Py, (0,8)=[(x1(0)[(X2($)[W)[?, (16)
where
1 . 2
(X(g)|n)= —===e""e NPH(x).  (17)
V2o

HereH(x;) is the Hermite polynomial ang is the phase of
the local oscillator. Equatiofi6) can be explicitly written as

2
e X Hn(X) Him(X,),
=1

(18

* o—i(n—m
Cncme i( )
2" Mniml

lexz( (ﬂ) = nEm

wherey= 6+ ¢, that is, our expression depends only on the
sum of the individual local angles.

The probability given by Eq(18) is for continuous vari-
ables. The majority of the tests of quantum mechanics versus
local realism require a binary result. Hence for a given
quadrature measuremexjtwe classify the result as “1” if
x;=0 and the mutually exclusive “0” ifx;<<0. Here we
have set the binning window about=0. Where this bin-
ning window is located is quite arbitrary, but the maximum
violation occurs for the value we have selected.
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The probability of obtaining both particles in the “1” bin H(6|¢)=— P13log,[ 2P11]— Podog,[ 2P g0l
is
—P1d0g[2P10] = Po1l0gy[2Ppa]. (27
Pu(y) = jo fo dx dxaPy x, (1) (19 It is now possible to calculate the Clauser-Hor6g and

spin (9) and information-theoretiq12) Bell inequalities.
Some insight into the problem can be achieved by a careful

while the probability of obtaining both particles in the “0 examination of the term

bin is
2n+m,n_
0 0 2
— [ F(n,m)—F(m,n)]*, 28
Pool #)= f, f, AxadXaPy (). (20) atmi(n—m)zL7 (M = Hmn] (28
o which is present in all the joint probability distributions. This

The other probabilities such #5(),Po(¢) can be calcu-  expression has several interesting features. First, as the dif-
are joint probabilities. Various of the strong Bell inequalities probability that the above expression contributes to any of

also require marginal probabilities of the form the probability distributions. The main contribution for the
o expression comes from the case=n=+1. Second, whem
Pa( iﬁ):f f dx,d%,Py o (). (21)  —mis even, the above expression is zero. Finallyn -
0J-= 12 comes large, the difference between then=n—1 andn

) ) ) +1,m=n elements for fixed larga vanishes and they reach
The above integrals can be easily evaluated using the rem asymptotic limit which is smaller than the=1,m=0

sults[19] case. If these higher ordetterms dominate due to the choice
. nem of the c,, in the probability formula, then the various Bell
J e °H (X)H y(X) = [F(n,m)— Fm,n)] inequalities cannot be violated. This also has the implication
0 n—m that the mean photon number cannot be high if a violation is
to occur and hence it is not a macroscopic test of quantum
(for n#m), (22 mechanics.

f & Hn(X)Hn() =21 76, . ll. A SIMPLE CASE
o To begin our investigations of the Bell inequalities, con-
sider the case where we have only two photon pair states,

that is,

%_%nﬁ(_%m), 23 W) =c,|0)|0) +¢,|1)] 1), (29

where for convenience we choosg real. We also require
with T' being the gamma function. Performing the integralsc3+ c2=1. The joint probability distributions are readily cal-

where F(n,m) is given by

FYnm=T

for Egs.(19) and(20) we find culated and in fact
P11(#)=Poo(¥) 1 coC
e Pu(#)=Pooi) =7+ ——-cogyl, (30
1 2n+m+17TCnC:1

+ -
4 nimin=my” P =Poi )= 5~ leogyl. (3
X[F(n,m)—F(m,n)]?co§ (n—m)y]. (24
CalculatingBcy andBg from Egs.(6) and(9) we find
Similarly Eq. (21) simplifies to

1 coCq
P,=1/2, (25) Bon=5+ ——{3 cog o] —cog 341}, (32)
which is independent of the sum of the local oscillator angle ACAC
Y. It is also simple to calculate the correlation function B= 0 1{3 co$ o] — cog 3y]}. (33
E(¥), m
n+m+3, o ok Optimizing for the angle/ we find
n~¥m
E(p)= 2 ————7[F(n,m—Fm,n)]?
(W= 2 =y Fnm = Amn)] L 2yZec,
Ben=5+ ——— (34)
x cog (n—m)y]. (26) ™
Given the probabilitie®1,Pqg, ... itis also possible to B :8\/50001 (35
calculate the conditional informatid (6| ¢), s T



4200 W. J. MUNRO PRA 59

TABLE I. The optimalc,, parameters to maximize the violation 1.05 ———————r ; ————— 210
of the Clauser-Horne and spin Bell inequalities. Tevalues for ]
the circle state of Gilchriset al. are also given. 104 - 1208
. 103 [ ] 2.06
n Cn Eq. (5) with r~1.12 Bon By
0 0.4990 0.5495 1z q 2%
1 0.6355 0.6893 o1l 1 202
2 0.4760 0.4323 ]
3 0.3135 0.1808 1.00 TP - ! N L] 200
4 0.1465 0.0567 0.5 0.6 0.7 o 0.8 0.9 1.0
5 0.0235 0.0142 _ )
6 0.0075 0.0029 FIG. 3. Plot of the Clauser-Horn@) and spin(b) Bell inequal-
7 0'0024 0'0005 ity versusy. A violation occurs for the Clauser-Horne Bell inequal-
: : ity if Bey>1. A violation of the spin Bell inequality occurs for
Bch 1.019 1.016 Bs>2.
By 2.076 2.064

ton number per mode must be low to obtain a violation.
Hence we will truncate the number state basis aff20)

that is,|Bey| <1 and|B¢/<2 for all cy. No violation of the photons per modt_a. Performing a numericgl gptimization over
strong Clauser-Horne or spin Bell inequality is possible. &/l thecy, the optimal set is found to maximize the Clauser-

For the information-theoretic case we find Horne and spin Bell inequalityTable )). A plot of ¢,, versus

nis depicted in Fig. 2.
1 It is interesting to now discuss some properties of these
M} (36) optimal c,,. First the general shape of tleg versusn curve
shown in Eq.(2) is similar to that considered in the circle
where state by Gilchristet al. [2]. It is, however, not exactly the
same(see Table)l Given this optimal parameter set, what is
2CoCy the maximum violation of the Bell inequalities we are con-
A= cog ¢]. (37 sidering? In Fig. 3 we plot both the Clauser-Horne and spin
Bell inequalities versug.

For the Clauser-Horne Bell inequality the maximum vio-
lation corresponds t8.y=1.019, while the maximum vio-
lation for the spin Bell inequality correspondsBg=2.076.
What is interesting here is that the percentage violation of
the spin inequality is approximately 3.8% compared with the
1.9% for the Clauser-Horne case. This significantly increases
tf]fe potential for an experiment to be performed provided

uch an experiment was not significantly more difficult. Also
results for the optimal,, set give a Clauser-Horne Bell-
Inequality violation that is approximately 20% greater than
the circle state results of Gilchrist al.[2].

It is interesting to consider whether a greater violation of
the Bell inequality can be achieved with the state given by
IV. NUMERICAL STUDIES Eq. (5). To this end we show the effect of the variation of

Considering the expressidt) for the correlated photon Pothr andy (sum of the local oscillator anglefor both the
pairs, what are the optimal, coefficients to maximize the Clauser-Horne and spin Bell inequalities in Fig. 4. As can be
violation? Because of the results indicated by Gilcheisal. ~ Seen, the spin Bell inequality can be violated far more sig-

and our previous discussion we anticipate that the mean phéuficantly than the similar Clauser-Horne case. In fact, as
occurred previously, the percentage maximum violation in

10 the spin inequality is twice that of the Clauser-Horne result.
In any of the analysis considered above we have not dis-

—\ log,

1
T2
4)\

1
H(lﬂ):_i log,

T

The information-theoretic Bell inequality is given B,
=3H(4¥)—H(3¢)=0. A violation of this inequality is pos-
sible if Bj,;,<<0. Unfortunately for allc,c; and ¢ we have
Blnf0>0

No violation is possible for any of the Bell inequalities
considered for the ideal sta®9) when the detection scheme
is based on homodyne quadrature-phase measurements.
more correlated photon pairs are present can a violation b
achieved? The obvious answer is yes, because of the rec
work of Gilchristet al. [2]. The real question is how large
this violation is.

0.8

0.6 1.02

Cn

g

g
b

04 14905 RN

0.2 4

0.0

0 2 4 6 8

n

FIG. 4. Plot of the Clauser-Horn@) and spin(b) Bell inequal-
ity versusr and ¢. A violation occurs for the CH Bell inequality if
FIG. 2. Plot ofc, versusn. Bcy>1. A violation of the spin Bell inequality occurs f@s>2.
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12 —— V. CONCLUSION

10 \/ In this article we have placed strict bounds on the optimal
08l ] c,, coefficients for the statél) which maximizes the Clauser-

: Horne and spin Bell inequalities when a homodyne
Bio O ] quadrature-phase measurement is performed. The spin Bell
04l ] inequality is violated by approximately 3.6% while the
' Clauser-Horne inequality is violated by approximately 1.9%.
» The violation is small, however, due to the fact that we are
o0 . . discarding information in the binning process. In fact, due to
00 02 04 06 the information loss in the binning process the information-
? theoretic Bell inequality is not violated in any regime. A
FIG. 5. Plot of the information-theoretic Bell inequality versus larger violation cannot be obtained using homodyne mea-
. A violation is possible foiB;,;,<O0. surements with the strong inequalities we have considered.
While our optimalc, coefficient gives a slightly better
cussed errors, their sources, and how they affect the potentigiolation than the pair coherent state, it is difficult to see how
violation. We will not present any significant details here insuch a state could be generated. Closely examining the spin
this article but refer the reader {@] for such a decision. Bell inequality with the pair coherent state still indicates that
Our final Bell inequality to be considered is the Braun-a greater violatior{approximately twice the sizés possible
stein and Cavefl8] information-theoretic case. In Fig. 5 we than for the other inequalities. This would make the test
plot Bi, Versusy. No violation of the information-theoretic much more feasible provided the pair coherent state could be
inequality is possible for any. generated. In such a system the mean photon number is
A question to be addressed here is why two of the strongmall, so this is not strictly a macroscopic test of quantum
inequalities can be violated while this information-theoreticmechanics. It does, however, have a macroscopic nature due
Bell inequality is far from being violated. In the binning to the strong local oscillator, which means large photodetec-
process to give a binary result for a quadrature measuremerir currents are obtained.
information must be discarded. The information-theoretic in- To conclude, quadrature-phase homodyne measurements
equality is much more sensitive to this information loss tharmprovide a mechanism for performing tests of the Bell in-
the Clauser-Horne inequality. Also why would we funda- equality with highly efficient detection. This allows one of
mentally expect all three inequalities to be violated? A vio-the loopholes in current experiments to be closed. However,
lation of any of the inequalities indicates a discrepancy bedue to the inherent information loss in the binning process,

02[ ]

tween quantum mechanics and local realism. the violations are small but should be achievable.
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