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Optimal states for Bell-inequality violations using quadrature-phase homodyne measurements

W. J. Munro
Centre for Laser Science, Department of Physics, University of Queensland, Brisbane, Queensland 4072, Australia

~Received 15 January 1999!

We identify what ideal correlated photon number states are required to maximize the discrepancy between
local realism and quantum mechanics when a quadrature homodyne phase measurement is used. Various
Bell-inequality tests are considered.@S1050-2947~99!05606-1#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

There has recently been active interest in tests of quan
mechanics@1# versus local realism in a high efficiency d
tection limit. Several authors@2–4# including ourselves have
considered detection schemes involving quadrature-ph
homodyne measurements. Such schemes use strong loc
cillators and hence have very high detection efficiency@5#.
This removes one of the current loopholes@6–9# and poten-
tially allows a strong test of quantum mechanics@10# to be
performed.

The original idea of Gilchristet al. @2# was to use acircle
or pair coherent state@11–13# produced by nondegenera
parametric oscillation with the pump mode adiabatica
eliminated. Using highly efficient quadrature-phase hom
dyne measurements, the Clauser-Horne strong Bell ineq
ity @14–16# could be tested in all optical regimes. A sma
~approximately 1.5%) but significant theoretical violatio
was found for this extremely ideal system. While the me
photon number for the system may be low~approximately
1.12), the use of homodyne measurements allows a ma
scopic current to be detected.

In this article, we take an unphysical but interesting a
proach and answer the following questions.

~1! Given that your detection scheme is a quadratu
phase homodyne measurement, what is the optimal inpu
correlated photon number state to maximize the poten
violation?

~2! What is the optimal Bell inequality to test?
To begin we will restrict our attention to correlated ph

ton number states of the form

uC&5 (
n50

`

cnun&un&. ~1!

Two main sources of correlated photon number curren
exist, each having its own particular form ofcn . The most
well known is simply the nondegenerate parametric ampli
specified by an ideal Hamiltonian of the form@17#

H52\xe~ab1a†b†!, ~2!

where e is the field amplitude of a nondepleting classic
pump andx is proportional to the susceptibility of the me
dium. a,b are the boson operators for the orthogonal sig
and idler modes. After a timet, the state of the system i
given by Eq.~1! with cn specified by
PRA 591050-2947/99/59~6!/4197~5!/$15.00
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cn5
tanhn@xet#

cosh@xet#
. ~3!

In the quadrature-phase-amplitude basis this state has a
tive Wigner function. Hence it can be described as a lo
hidden variable theory and thus cannot violate a Bell
equality.

The other source of highly correlated photon numb
states exists in nondegenerate parametric oscillation. In
limit of very large parametric nonlinearity and highQ cavi-
ties, a state of the form@13#

uC&5
er 2

A4p2I 0~2r 2!
E

0

2p

duureiu&ure2 iu& ~4!

can be generated. Herer is the size of the circle of the co
herent states andI 0 is the zeroth order modified Bessel fun
tion. Equivalently this state can be written in the form of E
~1! with cn given by

cn5
r 2n

n! I 0~2r 2!
. ~5!

This was the state considered by Gilchristet al. @2#.
Given the general form of known correlated number sta

~1!, the next fundamental question that should be initia
addressed is what we mean by the Bell inequality. A num
of Bell inequalities exist, and the particular one used depe
heavily on your application and experimental setup. The B
inequalities to be considered in this article are the Claus
Horne@15#, thespin @14#, and the information-theoretic@18#
Bell inequality. A detailed derivation of the various inequa
ties will not be given; the reader is referred to Re
@15,14,18#. Here we will consider only strong inequalitie
that is, inequalities where auxiliary assumptions~not based
on local realism! are not required. In Fig. 1 we depict a ve
idealized setup for a general Bell-inequality experiment.

Probably the most well known inequality is the Clause
Horne strong Bell inequality@15# given by

uBCHu<1, ~6!

where

BCH5
P11~u,f!2P11~u8,f!1P11~u,f8!1P11~u8,f8!

P1~u8!1P1~f!
.

~7!
4197 ©1999 The American Physical Society
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4198 PRA 59W. J. MUNRO
Here P11 is the probability that a ‘‘1’’ result occurs at eac
analyzerA,B givenu,f. Similarly P1 is the probability that
a ‘‘1’’ occurs at a detector while having no informatio
about the second. For many of the actual experimental c
siderations an angle factorization occurs so thatP11(u,f)
depends only onu1f. Also P1(u) andP1(f) are indepen-
dent ofu,f. In this caseBCH can be simplified to

BCH5
3P11~c!2P11~3c!

2P1
, ~8!

wherec5u1f52u82f85u1f8 and 3c5u81f.
The second form of the Bell inequality~sometimes re-

ferred to as thespin or original Bell inequality! is @14#

Bs5uE~u,f!2E~u8,f!1E~u,f8!1E~u8,f8!u<2, ~9!

where the correlation functionE(u,f) is given by

E~u,f!5P11~u,f!1P00~u,f!2P10~u,f!2P01~u,f!.
~10!

Here, as discussed above,P11 is the probability that a ‘‘1’’
result occurs at each analyzerA,B given u,f. P00 is the
probability that a ‘‘0’’ result occurs at each analyzerA,B,
while P10(P01) is the probability that a ‘‘1’’ ~‘‘0’’ ! result
occurs at the analyzerA and a ‘‘0’’ ~‘‘1’’ ! at B. With the
angle factorization given above, the inequality~9! can be
rewritten as

Bs5u3E~c!2E~3c!u<2. ~11!

Our final form of the Bell inequality to be considered
this article was developed by Braunstein and Caves@18#.
This classical information-theoretic Bell inequality has t
form

Binfo>0, ~12!

where

Binfo52H~uuf!1H~uuf8!1H~f8uu8!1H~u8uf!.
~13!

HereH(uuf) is given by

H~uuf!52(
a,b

P~a,b!logS P~a,b!

P~a! D , ~14!

FIG. 1. Schematic of a very generalized Bell experiment se
After a source prepares two particles, these particles are dire
out to the locationsA andB. At each location there is an analyze
with adjustable parametersu,f. The particles are then detecte
resulting in a binary result ‘‘1’’ or ‘‘0’’ individually. These results
can then be used to build up the statistics necessary to tes
various Bell inequalities.
n-

with log@P(a,b)/P(a)# being the information gained atB
given the result atA is known. The conditional information is
then given byH(uuf). The base of the logarithm determine
the units of the information~base 2 for bits, basee for nats!.
For quantum computing purposes, this inequality sho
prove highly useful as it directly deals with information co
tent. Several other Bell inequalities do exist, such as
Clauser-Horne-Shimony-Holt inequality@6#, but these are
not considered here due to their weaker nature. Auxili
assumptions are necessary in their derivation which open
several loopholes@7–9#.

II. CORRELATED STATES

From Eq.~1! we need to find the optimalcn which gives
the largest Bell-inequality violation. Before determining th
cn we need to briefly focus our attention on the quadratu
phase homodyne measurement.

A quadrature-phase-amplitude homodyne measurem
X(u) at A can be achieved by combining a signal field~say
â) with a strong local oscillator field~say e) to form two
new fields given byĉ65@ â6e exp(iu)#/A2. Here u is a
phase shift which allows the choice of particular observa
to be measured, for instance, choosingu as 0 orp/2 allows
the measurement of the conjugate phase variablesX(0) and
X(p/2), respectively. The homodyne measurement gives
photocurrent difference as

I d5c1
† c12c2

† c25e~ âe2 iu1â†e2 iu!5eX~u!. ~15!

Performing a measurement on the quadrature-phase am
tudeX(u) at A yields a resultx1(u) which ranges in size and
sign. Similarly a measurement on the quadrature-phase
plitude X(f) at B yields a resultx2(f). For our state given
by Eq. ~1!, the probability of obtaining the resul
x1(u),x2(f) is simply

Px1x2
~u,f!5 z^x1~u!u^x2~f!uC& z2, ~16!

where

^x~w!un&5
1

A2nn!Ap
e2 inwe2xi

2/2Hn~xi !. ~17!

HereHn(xi) is the Hermite polynomial andw is the phase of
the local oscillator. Equation~16! can be explicitly written as

Px1x2
~c!5(

n,m

cncm* e2 i (n2m)c

2n1mn!m!p )
i 51

2

e2xi
2
Hn~xi !Hm~xi !,

~18!

wherec5u1f, that is, our expression depends only on t
sum of the individual local angles.

The probability given by Eq.~18! is for continuous vari-
ables. The majority of the tests of quantum mechanics ve
local realism require a binary result. Hence for a giv
quadrature measurementxi we classify the result as ‘‘1’’ if
xi>0 and the mutually exclusive ‘‘0’’ ifxi,0. Here we
have set the binning window aboutxi50. Where this bin-
ning window is located is quite arbitrary, but the maximu
violation occurs for the value we have selected.
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The probability of obtaining both particles in the ‘‘1’’ bin
is

P11~c!5E
0

`E
0

`

dx1dx2Px1x2
~c! ~19!

while the probability of obtaining both particles in the ‘‘0
bin is

P00~c!5E
2`

0 E
2`

0

dx1dx2Px1x2
~c!. ~20!

The other probabilities such asP10(c),P01(c) can be calcu-
lated in a similar fashion. The probabilities formulated abo
are joint probabilities. Various of the strong Bell inequaliti
also require marginal probabilities of the form

P1~c!5E
0

`E
2`

`

dx1dx2Px1x2
~c!. ~21!

The above integrals can be easily evaluated using the
sults @19#

E
0

`

e2x2
Hn~x!Hm~x!5

p2n1m

n2m
@F~n,m!2F~m,n!#

~ for nÞm!, ~22!

E
2`

`

e2x2
Hn~x!Hm~x!52nn!Apdn,m ,

whereF(n,m) is given by

F21~n,m!5GS 1

2
2

1

2
nDGS 2

1

2
mD , ~23!

with G being the gamma function. Performing the integr
for Eqs.~19! and ~20! we find

P11~c!5P00~c!

5
1

4
1 (

n.m

2n1m11pcncm*

n!m! ~n2m!2

3@F~n,m!2F~m,n!#2cos@~n2m!c#. ~24!

Similarly Eq. ~21! simplifies to

P151/2, ~25!

which is independent of the sum of the local oscillator an
c. It is also simple to calculate the correlation functio
E(c),

E~c!5 (
n.m

2n1m13pcncm*

n!m! ~n2m!2 @F~n,m!2F~m,n!#2

3cos@~n2m!c#. ~26!

Given the probabilitiesP11,P00, . . . it is also possible to
calculate the conditional informationH(uuf),
e

e-

s

e

H~uuf!52P11log2@2P11#2P00log2@2P00#

2P10log2@2P10#2P01log2@2P01#. ~27!

It is now possible to calculate the Clauser-Horne~6! and
spin ~9! and information-theoretic~12! Bell inequalities.
Some insight into the problem can be achieved by a car
examination of the term

2n1mp

n!m! ~n2m!2 @F~n,m!2F~m,n!#2, ~28!

which is present in all the joint probability distributions. Th
expression has several interesting features. First, as the
ference betweenn and m becomes large, the smaller th
probability that the above expression contributes to any
the probability distributions. The main contribution for th
expression comes from the casem5n61. Second, whenn
2m is even, the above expression is zero. Finally, asn be-
comes large, the difference between then,m5n21 andn
11,m5n elements for fixed largen vanishes and they reac
an asymptotic limit which is smaller than then51,m50
case. If these higher ordern terms dominate due to the choic
of the cn in the probability formula, then the various Be
inequalities cannot be violated. This also has the implicat
that the mean photon number cannot be high if a violation
to occur and hence it is not a macroscopic test of quan
mechanics.

III. A SIMPLE CASE

To begin our investigations of the Bell inequalities, co
sider the case where we have only two photon pair sta
that is,

uC&5c0u0&u0&1c1u1&u1&, ~29!

where for convenience we choosecn real. We also require
c0

21c1
251. The joint probability distributions are readily ca

culated and in fact

P11~c!5P00~c!5
1

4
1

c0c1

p
cos@c#, ~30!

P10~c!5P01~c!5
1

4
2

c0c1

p
cos@c#. ~31!

CalculatingBCH andBs from Eqs.~6! and ~9! we find

BCH5
1

2
1

c0c1

p
$3 cos@c0#2cos@3c#%, ~32!

Bs5
4c0c1

p
$3 cos@c0#2cos@3c#%. ~33!

Optimizing for the anglec we find

BCH5
1

2
1

2A2c0c1

p
, ~34!

Bs5
8A2c0c1

p
, ~35!
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that is, uBCHu<1 anduBsu<2 for all c0. No violation of the
strong Clauser-Horne or spin Bell inequality is possible.

For the information-theoretic case we find

H~c!52
1

2
log2F1

4
2l2G2l log2F112l

122l G , ~36!

where

l5
2c0c1

p
cos@c#. ~37!

The information-theoretic Bell inequality is given byBinfo
53H(c)2H(3c)>0. A violation of this inequality is pos-
sible if Binfo,0. Unfortunately for allc0c1 and c we have
Binfo.0.

No violation is possible for any of the Bell inequalitie
considered for the ideal state~29! when the detection schem
is based on homodyne quadrature-phase measuremen
more correlated photon pairs are present can a violation
achieved? The obvious answer is yes, because of the re
work of Gilchrist et al. @2#. The real question is how larg
this violation is.

IV. NUMERICAL STUDIES

Considering the expression~1! for the correlated photon
pairs, what are the optimalcn coefficients to maximize the
violation? Because of the results indicated by Gilchristet al.
and our previous discussion we anticipate that the mean

TABLE I. The optimalcn parameters to maximize the violatio
of the Clauser-Horne and spin Bell inequalities. Thecn values for
the circle state of Gilchristet al. are also given.

n cn Eq. ~5! with r;1.12

0 0.4990 0.5495
1 0.6355 0.6893
2 0.4760 0.4323
3 0.3135 0.1808
4 0.1465 0.0567
5 0.0235 0.0142
6 0.0075 0.0029
7 0.0024 0.0005

BCH 1.019 1.016
Bs 2.076 2.064

FIG. 2. Plot ofcn versusn.
. If
be
ent

o-

ton number per mode must be low to obtain a violatio
Hence we will truncate the number state basis at 10@20#
photons per mode. Performing a numerical optimization o
all thecn , the optimal set is found to maximize the Clause
Horne and spin Bell inequality~Table I!. A plot of cn versus
n is depicted in Fig. 2.

It is interesting to now discuss some properties of th
optimal cn . First the general shape of thecn versusn curve
shown in Eq.~2! is similar to that considered in the circl
state by Gilchristet al. @2#. It is, however, not exactly the
same~see Table I!. Given this optimal parameter set, what
the maximum violation of the Bell inequalities we are co
sidering? In Fig. 3 we plot both the Clauser-Horne and s
Bell inequalities versusc.

For the Clauser-Horne Bell inequality the maximum vi
lation corresponds toBCH51.019, while the maximum vio-
lation for the spin Bell inequality corresponds toBs52.076.
What is interesting here is that the percentage violation
the spin inequality is approximately 3.8% compared with t
1.9% for the Clauser-Horne case. This significantly increa
the potential for an experiment to be performed provid
such an experiment was not significantly more difficult. Al
the results for the optimalcn set give a Clauser-Horne Bell
inequality violation that is approximately 20% greater th
the circle state results of Gilchristet al. @2#.

It is interesting to consider whether a greater violation
the Bell inequality can be achieved with the state given
Eq. ~5!. To this end we show the effect of the variation
both r andc ~sum of the local oscillator angles! for both the
Clauser-Horne and spin Bell inequalities in Fig. 4. As can
seen, the spin Bell inequality can be violated far more s
nificantly than the similar Clauser-Horne case. In fact,
occurred previously, the percentage maximum violation
the spin inequality is twice that of the Clauser-Horne res

In any of the analysis considered above we have not

FIG. 3. Plot of the Clauser-Horne~a! and spin~b! Bell inequal-
ity versusc. A violation occurs for the Clauser-Horne Bell inequa
ity if BCH.1. A violation of the spin Bell inequality occurs fo
Bs.2.

FIG. 4. Plot of the Clauser-Horne~a! and spin~b! Bell inequal-
ity versusr andc. A violation occurs for the CH Bell inequality if
BCH.1. A violation of the spin Bell inequality occurs forBs.2.
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cussed errors, their sources, and how they affect the pote
violation. We will not present any significant details here
this article but refer the reader to@2# for such a decision.

Our final Bell inequality to be considered is the Brau
stein and Caves@18# information-theoretic case. In Fig. 5 w
plot Binfo versusc. No violation of the information-theoretic
inequality is possible for anyc.

A question to be addressed here is why two of the str
inequalities can be violated while this information-theore
Bell inequality is far from being violated. In the binnin
process to give a binary result for a quadrature measurem
information must be discarded. The information-theoretic
equality is much more sensitive to this information loss th
the Clauser-Horne inequality. Also why would we fund
mentally expect all three inequalities to be violated? A v
lation of any of the inequalities indicates a discrepancy
tween quantum mechanics and local realism.

FIG. 5. Plot of the information-theoretic Bell inequality vers
c. A violation is possible forBinfo,0.
s
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V. CONCLUSION

In this article we have placed strict bounds on the optim
cn coefficients for the state~1! which maximizes the Clauser
Horne and spin Bell inequalities when a homody
quadrature-phase measurement is performed. The spin
inequality is violated by approximately 3.6% while th
Clauser-Horne inequality is violated by approximately 1.9
The violation is small, however, due to the fact that we a
discarding information in the binning process. In fact, due
the information loss in the binning process the informatio
theoretic Bell inequality is not violated in any regime.
larger violation cannot be obtained using homodyne m
surements with the strong inequalities we have consider

While our optimalcn coefficient gives a slightly bette
violation than the pair coherent state, it is difficult to see h
such a state could be generated. Closely examining the
Bell inequality with the pair coherent state still indicates th
a greater violation~approximately twice the size! is possible
than for the other inequalities. This would make the t
much more feasible provided the pair coherent state could
generated. In such a system the mean photon numbe
small, so this is not strictly a macroscopic test of quant
mechanics. It does, however, have a macroscopic nature
to the strong local oscillator, which means large photodet
tor currents are obtained.

To conclude, quadrature-phase homodyne measurem
provide a mechanism for performing tests of the Bell
equality with highly efficient detection. This allows one o
the loopholes in current experiments to be closed. Howe
due to the inherent information loss in the binning proce
the violations are small but should be achievable.
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