5,061 research outputs found
Conformal Theory of M2, D3, M5 and `D1+D5' Branes
The bosonic actions for M2, D3 and M5 branes in their own d-dimensional
near-horizon background are given in a manifestly SO(p+1,2) x SO(d-p-1)
invariant form (p=2,3,5). These symmetries result from a breakdown of ISO(d,2)
(with d=10 for D3 and d=11 for M2 and M5) symmetry by the Wess-Zumino term and
constraints. The new brane actions, reduce after gauge-fixing and solving
constraints to (p+1) dimensional interacting field theories with a non-linearly
realized SO(p+1,2) conformal invariance. We also present an interacting
two-dimensional conformal field theory on a D-string in the near-horizon
geometry of a D1+D5 configuration.Comment: 32 pages, two figures, Latex. A version to appear in JHEP. A comment
is added on infinite dimensional Kac-Moody type symmetry of D1+D5 system
observed by Brandt, Gomis, Sim'o
An increase in under hydrostatic pressure in the superconducting doped topological insulator NbBiSe
We report an unexpected positive hydrostatic pressure derivative of the
superconducting transition temperature in the doped topological insulator \NBS
via SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary
to reports on the homologues \CBS and \SBS where smooth suppression of is
observed. Our results are consistent with recent Ginzburg-Landau theory
predictions of a pressure-induced enhancement of in the nematic
multicomponent state proposed to explain observations of rotational
symmetry breaking in doped BiSe superconductors.Comment: 5 pages, 5 figure
Microscopic calculation of the phonon dynamics of SrRuO compared with LaCuO
The phonon dynamics of the low-temperature superconductor SrRuO
is calculated quantitatively in linear response theory and compared with the
structurally isomorphic high-temperature superconductor LaCuO. Our
calculation corrects for a typical deficit of LDA-based calculations which
always predict a too large electronic -dispersion insufficient to
describe the c-axis response in the real materials. With a more realistic
computation of the electronic band structure the frequency and wavevector
dependent irreducible polarization part of the density response function is
determined and used for adiabatic and nonadiabatic phonon calculations. Our
analysis for SrRuO reveals important differences from the lattice
dynamics of - and -doped cuprates. Consistent with experimental evidence
from inelastic neutron scattering the anomalous doping related softening of the
strongly coupling high-frequency oxygen bond-stretching modes (OBSM) which is
generic for the cuprate superconductors is largely suppressed or completely
absent, respectively, depending on the actual value of the on-site Coulomb
repulsion of the Ru4d orbitals. Also the presence of a characteristic
-mode with a very steep dispersion coupling strongly with the
electrons is missing in SrRuO. Moreover, we evaluate the
possibility of a phonon-plasmon scenario for SrRuO which has been
shown recently to be realistic for LaCuO. In contrast to
LaCuO in SrRuO the very low lying plasmons are
overdamped along the c-axis.Comment: 30 pages, 16 figures, 4 tables, 33 reference
Ultrafast dynamics of a magnetic antivortex - Micromagnetic simulations
The antivortex is a fundamental magnetization structure which is the
topological counterpart of the well-known magnetic vortex. We study here the
ultrafast dynamic behavior of an isolated antivortex in a patterned Permalloy
thin-film element. Using micromagnetic simulations we predict that the
antivortex response to an ultrashort external field pulse is characterized by
the production of a new antivortex as well as of a temporary vortex, followed
by an annihilation process. These processes are complementary to the recently
reported response of a vortex and, like for the vortex, lead to the reversal of
the orientation of the antivortex core region. In addition to its fundamental
interest, this dynamic magnetization process could be used for the generation
and propagation of spin waves for novel logical circuits.Comment: 4 pages, 4 figures. To be published in Physical Review B (R
Water adsorption on amorphous silica surfaces: A Car-Parrinello simulation study
A combination of classical molecular dynamics (MD) and ab initio
Car-Parrinello molecular dynamics (CPMD) simulations is used to investigate the
adsorption of water on a free amorphous silica surface. From the classical MD
SiO_2 configurations with a free surface are generated which are then used as
starting configurations for the CPMD.We study the reaction of a water molecule
with a two-membered ring at the temperature T=300K. We show that the result of
this reaction is the formation of two silanol groups on the surface. The
activation energy of the reaction is estimated and it is shown that the
reaction is exothermic.Comment: 12 pages, 6 figures, to be published in J. Phys.: Condens. Matte
Erbium-doped fiber amplifier elements for structural analysis sensors
The use of erbium-doped fiber amplifiers (EDFA's) in optical fiber sensor systems for structural analysis is described. EDFA's were developed for primary applications as periodic regenerator amplifiers in long-distance fiber-based communication systems. Their in-line amplification performance also makes them attractive for optical fiber sensor systems which require long effective lengths or the synthesis of special length-dependent signal processing functions. Sensor geometries incorporating EDFA's in recirculating and multiple loop sensors are discussed. Noise and polarization birefringence are also considered, and the experimental development of system components is discussed
D-string on near horizon geometries and infinite conformal symmetry
We show that the symmetries of effective D-string actions in constant dilaton
backgrounds are directly related to homothetic motions of the background
metric. In presence of such motions, there are infinitely many nonlinearly
realized rigid symmetries forming a loop (or loop like) algebra. Near horizon
(AdS) D3 and D1+D5 backgrounds are discussed in detail and shown to provide 2d
interacting field theories with infinite conformal symmetry.Comment: 5 pages, revtex, no figures; symmetry transformations for BI action
added, coupling of D-string to RR 2-form in D1-D5 background corrected; final
version, to appear in Phys. Rev. Let
Quantum phantom cosmology
We apply the formalism of quantum cosmology to models containing a phantom
field. Three models are discussed explicitly: a toy model, a model with an
exponential phantom potential, and a model with phantom field accompanied by a
negative cosmological constant. In all these cases we calculate the classical
trajectories in configuration space and give solutions to the Wheeler-DeWitt
equation in quantum cosmology. In the cases of the toy model and the model with
exponential potential we are able to solve the Wheeler-DeWitt equation exactly.
For comparison, we also give the corresponding solutions for an ordinary scalar
field. We discuss in particular the behaviour of wave packets in
minisuperspace. For the phantom field these packets disperse in the region that
corresponds to the Big Rip singularity. This thus constitutes a genuine quantum
region at large scales, described by a regular solution of the Wheeler-DeWitt
equation. For the ordinary scalar field, the Big-Bang singularity is avoided.
Some remarks on the arrow of time in phantom models as well as on the relation
of phantom models to loop quantum cosmology are given.Comment: 21 pages, 6 figure
Black Holes, Branes and Superconformal Symmetry
The main focus of this lecture is on extended objects in adS*S bosonic
backgrounds with unbroken supersymmetry. The backgrounds are argued to be
exact, special consideration are given to the non-maximal supersymmetry case.
The near horizon superspace construction is explained. The superconformal
symmetry appears in the worldvolume actions as the superisometry of the near
horizon superspace, like the superPoincare symmetry of GS superstring and BST
supermembrane in the flat superspace. The issues in gauge fixing of local
kappa-symmetry are reviewed. We describe the features of the gauge-fixed IIB
superstring in adS(5)*S(5) background with RR 5-form. From a truncated boundary
version of it we derive an analytic N=2 off shell harmonic superspace of
Yang-Mills theory. The reality condition of the analytic subspace, which
includes the antipodal map on the sphere, has a simple meaning of the symmetry
of the string action in the curved space. The relevant issues of black holes
and superconformal mechanics are addressed.Comment: 34 pages, Latex. To be published in the Proceedings of a conference
held in Corfu, Greece in September 1998. Improvement in Sec. 3.
- …