18 research outputs found
Statistical correlation for the composite Boson
It is well known that the particles in a beam of Boson obeying Bose-Einstein
statistics tend to cluster (bunching effect), while the particles in a
degenerate beam of Fermion obeying Fermi-Dirac statistics expel each other
(anti-bunching effect). Here we investigate, for the first time, the
statistical correlation effect for the composite Boson, which is formed from a
spin singlet entangled electron pair. By using nonequilibrium Green's function
technique, we obtain a positive cross correlation for this kind of the
composite Boson when the external voltage is smaller than the gap energy, which
demonstrates that a spin singlet entangled electron pair looks like a composite
Boson. In the larger voltage limit, the cross correlation becomes negative due
to the contribution of the quasiparticles. At large voltages, the oscillation
between Fermionic and Bosonic behavior of cross correlation is also observed in
the strong coupling regime as one changes the position of the resonant levels.
Our result can be easily tested in a three-terminal
normal-superconductor-superconductor (N-S-S) hybrid mesoscopic system
Andreev tunnelling in quantum dots: A slave-boson approach
We study a strongly interacting quantum dot connected to a normal and to a
superconducting lead. By means of the slave-boson technique we investigate the
low temperature regime and discuss electrical transport through the dot. We
find that the zero bias anomaly in the current-voltage characteristics which is
associated to the occurance of the Kondo resonance in the quantum dot, is
enhanced in the presence of superconductivity, due to resonant Andreev
scattering.Comment: 4 pages, 1 figur
Influence of Supercurrents on Low-Temperature Thermopower in Mesoscopic N/S Structures
The thermopower of mesoscopic normal metal/superconductor structures has been
measured at low temperatures. Effect of supercurrent present in normal part of
the structure was studied in two cases: when it was created by applied external
magnetic field and when it was applied directly using extra superconducting
electrodes. Temperature and magnetic field dependencies of thermopower are
compared to the numerical simulations based on the quasiclassical theory of the
superconducting proximity effect.Comment: 21 pages, 12 figures. To be published in the proceedings of the ULTI
conference organized in Lammi, Finland (2006
Reflectionless tunneling in ballistic normal-metal--superconductor junctions
We investigate the phenomenon of reflectionless tunneling in ballistic
normal-metal--superconductor (NS) structures, using a semiclassical formalism.
It is shown that applied magnetic field and superconducting phase difference
both impair the constructive interference leading to this effect, but in a
qualitatively different way. This is manifested both in the conductance and in
the shot noise properties of the system considered. Unlike diffusive systems,
the features of the conductance are sharp, and enable fine spatial control of
the current, as well as single channel manipulations. We discuss the
possibility of conducting experiments in ballistic semiconductor-superconductor
structures with smooth interfaces and some of the phenomena, specific to such
structures, that could be measured. A general criterion for the barrier at NS
interfaces, though large, to be effectively transparent to pair current is
obtained.Comment: published versio
Dissipative Electron Transport through Andreev Interferometers
We consider the conductance of an Andreev interferometer, i.e., a hybrid
structure where a dissipative current flows through a mesoscopic normal (N)
sample in contact with two superconducting (S) "mirrors". Giant conductance
oscillations are predicted if the superconducting phase difference is
varied. Conductance maxima appear when is on odd multiple of due
to a bunching at the Fermi energy of quasiparticle energy levels formed by
Andreev reflections at the N-S boundaries. For a ballistic normal sample the
oscillation amplitude is giant and proportional to the number of open
transverse modes. We estimate using both analytical and numerical methods how
scattering and mode mixing --- which tend to lift the level degeneracy at the
Fermi energy --- effect the giant oscillations. These are shown to survive in a
diffusive sample at temperatures much smaller than the Thouless temperature
provided there are potential barriers between the sample and the normal
electron reservoirs. Our results are in good agreement with previous work on
conductance oscillations of diffusive samples, which we propose can be
understood in terms of a Feynman path integral description of quasiparticle
trajectories.Comment: 24 pages, revtex, 12 figures in eps forma
Thermoelectric effects in superconducting proximity structures
Attaching a superconductor in good contact with a normal metal makes rise to
a proximity effect where the superconducting correlations leak into the normal
metal. An additional contact close to the first one makes it possible to carry
a supercurrent through the metal. Forcing this supercurrent flow along with an
additional quasiparticle current from one or many normal-metal reservoirs makes
rise to many interesting effects. The supercurrent can be used to tune the
local energy distribution function of the electrons. This mechanism also leads
to finite thermoelectric effects even in the presence of electron-hole
symmetry. Here we review these effects and discuss to which extent the existing
observations of thermoelectric effects in metallic samples can be explained
through the use of the dirty-limit quasiclassical theory.Comment: 14 pages, 10 figures. 374th WE-Heraus seminar: Spin physics of
superconducting heterostructures, Bad Honnef, 200
Phase coherent transport in hybrid superconducting structures: the case of d-wave superconductors
We examine the effect of d-wave symmetry on zero bias anomalies in
normal-superconducting tunnel junctions and phase-periodic conductances in
Andreev interferometers. In the presence of d-wave pairing, zero-bias anomalies
are suppressed compared with the s-wave case. For Andreev interferometers with
aligned islands, the phase-periodic conductance is insensistive to the nature
of the pairing, whereas for non-aligned islands, the nature of the zero-phase
extremum is reversed.Comment: 10 Pages, Revtex. 11 postscript figures available on reques
Electron transport through strongly interacting quantum dot coupled to normal metal and superconductor
We study the electron transport through the quantum dot coupled to the normal
metal and BCS-like superconductor (N - QD - S) in the presence of the Kondo
effect and Andreev scattering. The system is described by the single impurity
Anderson model in the limit of strong on-dot interaction. We use recently
proposed equation of motion technique for Keldysh nonequilibrium Green's
function together with the modified slave boson approach to study the electron
transport. We derive formula for the current which contains various tunneling
processes and apply it to study the transport through the system. We find that
the Andreev conductance is strongly suppressed and there is no zero-bias
(Kondo) anomaly in the differential conductance. We discuss effects of the
particle-hole asymmetry in the electrodes as well as the asymmetry in the
couplings.Comment: Supercond. Sci. Technol. - accepted for publicatio
Resonant Andreev reflections in superconductor-carbon-nanotube devices
Resonant Andreev reflection through superconductor-carbon-nanotube devices
was investigated theoretically with a focus on the superconducting proximity
effect. Consistent with a recent experiment, we find that for high transparency
devices on-resonance, the Andreev current is characterized by a large value and
a resistance dip; low-transparency off-resonance devices give the opposite
result. We also give evidence that the observed low-temperature transport
anomaly may be a natural result of Andreev reflection process
Random-Matrix Theory of Quantum Transport
This is a comprehensive review of the random-matrix approach to the theory of
phase-coherent conduction in mesocopic systems. The theory is applied to a
variety of physical phenomena in quantum dots and disordered wires, including
universal conductance fluctuations, weak localization, Coulomb blockade,
sub-Poissonian shot noise, reflectionless tunneling into a superconductor, and
giant conductance oscillations in a Josephson junction.Comment: 85 pages including 52 figures, to be published in Rev.Mod.Phy