158 research outputs found

    Current Views on the Interplay between Tyrosine Kinases and Phosphatases in Chronic Myeloid Leukemia

    Get PDF
    Simple SummaryThe chromosomal alteration t(9;22) generating the BCR-ABL1 fusion protein represents the principal feature that distinguishes some types of leukemia. An increasing number of articles have focused the attention on the relevance of protein phosphatases and their potential role in the control of BCR-ABL1-dependent or -independent signaling in different areas related to the biology of chronic myeloid leukemia. Herein, we discuss how tyrosine and serine/threonine protein phosphatases may interact with protein kinases, in order to regulate proliferative signal cascades, quiescence and self-renewals on leukemic stem cells, and drug-resistance, indicating how BCR-ABL1 can (directly or indirectly) affect these critical cells behaviors. We provide an updated review of the literature on the function of protein phosphatases and their regulation mechanism in chronic myeloid leukemia.Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by BCR-ABL1 oncogene expression. This dysregulated protein-tyrosine kinase (PTK) is known as the principal driver of the disease and is targeted by tyrosine kinase inhibitors (TKIs). Extensive documentation has elucidated how the transformation of malignant cells is characterized by multiple genetic/epigenetic changes leading to the loss of tumor-suppressor genes function or proto-oncogenes expression. The impairment of adequate levels of substrates phosphorylation, thus affecting the balance PTKs and protein phosphatases (PPs), represents a well-established cellular mechanism to escape from self-limiting signals. In this review, we focus our attention on the characterization of and interactions between PTKs and PPs, emphasizing their biological roles in disease expansion, the regulation of LSCs and TKI resistance. We decided to separate those PPs that have been validated in primary cell models or leukemia mouse models from those whose studies have been performed only in cell lines (and, thus, require validation), as there may be differences in the manner that the associated pathways are modified under these two conditions. This review summarizes the roles of diverse PPs, with hope that better knowledge of the interplay among phosphatases and kinases will eventually result in a better understanding of this disease and contribute to its eradication

    Revisiting the Role of Leukocytes in Cystic Fibrosis

    Get PDF
    Cystic fibrosis in characterized by pulmonary bacterial colonization and hyperinflammation. Lymphocytes, monocytes/macrophages, neutrophils, and dendritic cells of patients with CF express functional CFTR and are directly affected by altered CFTR expression/function, impairing their ability to resolve infections and inflammation. However, the mechanism behind and the contribution of leukocytes in the pathogenesis of CF are still poorly characterized. The recent clinical introduction of specific CFTR modulators added an important tool not only for the clinical management of the disease but also to the investigation of the pathophysiological mechanisms related to CFTR dysfunction and dysregulated immunity. These drugs treat the basic defect in cystic fibrosis (CF) by increasing CFTR function with improvement of lung function and quality of life, and may improve clinical outcomes also by correcting the dysregulated immune function that characterizes CF. Measure of CFTR function, protein expression profiling and several omics methods were used to identify molecular changes in freshly isolated leukocytes of CF patients, highlighting two roles of leukocytes in CF: one more generally related to the mechanism(s) causing immune dysregulation in CF and unresolved inflammation, and another more applicative role, which identifies in myeloid cells, an important tool predictive of the therapeutic response of CF patients. In this review we will summarize available data on CFTR expression and function in leukocyte populations and will discuss potential clinical applications based on available data

    A Comprehensive Review of Receptor-Type Tyrosine-Protein Phosphatase Gamma (PTPRG) Role in Health and Non-Neoplastic Disease

    Get PDF
    Protein tyrosine phosphatase receptor gamma (PTPRG) is known to interact with and regulate several tyrosine kinases, exerting a tumor suppressor role in several type of cancers. Its wide expression in human tissues compared to the other component of group 5 of receptor phosphatases, PTPRZ expressed as a chondroitin sulfate proteoglycan in the central nervous system, has raised interest in its role as a possible regulatory switch of cell signaling processes. Indeed, a carbonic anhydrase-like domain (CAH) and a fibronectin type III domain are present in the N-terminal portion and were found to be associated with its role as [HCO 3 − ] sensor in vascular and renal tissues and a possible interaction domain for cell adhesion, respectively. Studies on PTPRG ligands revealed the contactins family (CNTN) as possible interactors. Furthermore, the correlation of PTPRG phosphatase with inflammatory processes in different normal tissues, including cancer, and the increasing amount of its soluble form (sPTPRG) in plasma, suggest a possible role as inflammatory marker. PTPRG has important roles in human diseases; for example, neuropsychiatric and behavioral disorders and various types of cancer such as colon, ovary, lung, breast, central nervous system, and inflammatory disorders. In this review, we sum up our knowledge regarding the latest discoveries in order to appreciate PTPRG function in the various tissues and diseases, along with an interactome map of its relationship with a group of validated molecular interactors

    Interferon-γ and tumor necrosis factor-α enhance p60src expression in human macrophages and myelomonocytic cell lines

    Get PDF
    AbstractWe investigated modulation of p60src expression in human mononuclear phagocytes. By analysis of [35S]methionine-labelled cells we found that synthesis of p60src is higher in human monocytes compared to macrophages derived from in vitro cultivation of monocytes. Western blot analysis showed that expression of p60src in monocyte-derived macrophages can be enhanced if monocytes are differentiated into macrophages in the presence of interferon-γ (IFN-γ), or tumor necrosis factor-α (TNF-α). Enhanced p60src expression caused by IFN-γ or TNF-a correlated with an enhanced autophosphorylating kinase activity assayed in anti-p60src immune precipitates. In vivo phosphorylation of p60src and analysis of phosphopeptides by tryptic digestion showed that treatment with cytokines did not affect the pattern of phosphorylation of distinct phosphopeptides. The human monocytic cell lines, U937 and HL-60, induced to differentiate along the monocytic pathway by IFN-γ, or a combination of IFN-γ and TNF-α, expressed higher amounts of the p60src, but not of the p59fyn or p62yes, kinase activity. These findings show that p60src is modulated in the course of differentiation of human monocytes to macrophages, and that macrophage-activating cytokines increase p60src expression in human monocyte-derived macrophages

    RHOA and PRKCZ control different aspects of cell motility in pancreatic cancer metastatic clones

    Get PDF
    Background: Our understanding of the mechanism regulating pancreatic cancer metastatic phenotype is limited. We analyzed the role of RHOA and PRKCZ in the motility attitude of two subclones of the pancreatic adenocarcinoma cell line SUIT-2 (S2), with different in vivo metastatic potential in nude mice: S2-m with a low metastatic potential and highly metastatic S2-CP9 using RHOA and PRKCZ cell-permeable inhibitory peptides.Methods: Adhesion assays, cell permeable peptides, RHOA activity assay, western blottingResults: When used in combination cell-permeable inhibitory peptides partially inhibited cell adhesion by about 50% in clone S2-CP9. In clone S2-m, the effect was limited to 15% inhibition. In a wound healing assay, S2-CP9 was sensitive only to treatment with the combination of both RHOA and PRKCZ inhibitory peptides. Conversely, S2-m was unable to migrate toward both ends of the wound in basal conditions. Migration of cells through a membrane with 8 mu m pores was completely abolished in both clones by individual treatment with RHOA and PRKCZ inhibitory peptides.Conclusion: Herein, we demonstrate a critical role for RHOA and PRKCZ in the regulation of different aspects of cell motility of pancreatic adenocarcinoma and demonstrate the need to inhibit both pathways to obtain a functionally relevant effect in most assays. These results indicate that RHOA and PRKCZ, and their downstream effectors, can represent important pharmacological targets that could potentially control the highly metastatic attitude of PDAC

    Lipid phosphate phosphatase-3 regulates tumor growth via β-catenin and Cyclin-D1 signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The acquisition of proliferative and invasive phenotypes is considered a hallmark of neoplastic transformation; however, the underlying mechanisms are less well known. Lipid phosphate phosphatase-3 (LPP3) not only catalyzes the dephosphorylation of the bioactive lipid sphingosine-1-phosphate (S1P) to generate sphingosine but also may regulate embryonic development and angiogenesis <it>via </it>the Wnt pathway. The goal of this study was to determine the role of LPP3 in tumor cells.</p> <p>Results</p> <p>We observed increased expression of LPP3 in glioblastoma primary tumors and in U87 and U118 glioblastoma cell lines. We demonstrate that <it>LPP3</it>-knockdown inhibited both U87 and U118 glioblastoma cell proliferation in culture and tumor growth in xenograft assays. Biochemical experiments provided evidence that <it>LPP3</it>-knockdown reduced β-catenin, CYCLIN-D1, and CD133 expression, with a concomitant increase in phosphorylated β-catenin. In a converse experiment, the forced expression of LPP3 in human colon tumor (SW480) cells potentiated tumor growth <it>via </it>increased β-catenin stability and CYCLIN-D1 synthesis. In contrast, elevated expression of LPP3 had no tumorigenic effects on primary cells.</p> <p>Conclusions</p> <p>These results demonstrate for the first time an unexpected role of LPP3 in regulating glioblastoma progression by amplifying β-catenin and CYCLIN-D1 activities.</p

    Elevated urinary levels of urokinase-type plasminogen activator receptor (uPAR) in pancreatic ductal adenocarcinoma identify a clinically high-risk group

    Get PDF
    BACKGROUND: The urokinase plasminogen activator receptor is highly expressed and its gene is amplified in about 50% of pancreatic ductal adenocarcinomas; this last feature is associated with worse prognosis. It is unknown whether the level of its soluble form (suPAR) in urine may be a diagnostic-prognostic marker in these patients. METHODS: The urinary level of suPAR was measured in 146 patients, 94 pancreatic ductal adenocarcinoma and 52 chronic pancreatitis. Urine from 104 healthy subjects with similar age and gender distribution served as controls. suPAR levels were normalized with creatinine levels (suPAR/creatinine, ng/mg) to remove urine dilution effect. RESULTS: Urinary suPAR/creatinine values of pancreatic ductal adenocarcinoma patients were significantly higher (median 9.8; 25(th)-75(th )percentiles 5.3-20.7) than those of either healthy donors (median 0; 0-0.5) or chronic pancreatitis patients (median 2.7; 0.9-4.7). The distribution of values among cancer patients was widespread and asymmetric, 53% subjects having values beyond the 95(th )percentile of healthy donors. The values of suPAR/creatinine did not correlate with tumour stage, Ca19-9 or CEA levels. Higher values correlated with poor prognosis among non-resected patients at univariate analysis; multivariate Cox regression identified high urinary suPAR/creatinine as an independent predictor of poor survival among all cancer patients (odds ratio 2.10, p = 0.0023), together with tumour stage (stage III odds ratio 2.65, p = 0.0017; stage IV odds ratio 4.61, p < 0.0001) and female gender (odds ratio 1.85, p = 0.01). CONCLUSIONS: A high urinary suPAR/creatinine ratio represents a useful marker for the identification of a subset of patients with poorer outcome

    Mechanism of action of the monosialoganglioside GM1 as a modulator of CD4 expression. Evidence that GM1-CD4 interaction triggers dissociation of p56lck from CD4, and CD4 internalization and degradation.

    Get PDF
    Analyzing the mechanisms underlying the capability of the monosialoganglioside GM1 to induce CD4 modulation we observed that GM1 has a dual effect on the CD4 molecule. GM1 treatment of the lymphoma cell line MOLT-3 and CD4-transfected HeLa cells for times shorter than 30 min prevented binding of monoclonal antibodies (mAbs) recognizing epitopes located within the first NH2-terminal domains of CD4, but not of the OKT4 mAb, which binds to the region of CD4 proximal to the transmembrane domain. However, no binding of the OKT4 mAb was observed after a few hours of treatment with GM1 in both MOLT-3 cells and HeLa cells transfected with an intact CD4 molecule, but not in HeLa cells transfected with a CD4 molecule lacking the bulk of the cytoplasmic domain, suggesting that modulation of CD4 by GM1 depends on the integrity of the cytoplasmic domain. GM1 treatment blocked binding of several mAbs which recognize epitopes located within the first two NH2-terminal domains of CD4 and did not induce CD4 down-modulation if MOLT-3 cells were preincubated with the OKT4A or the OKT4 mAbs. Immunoprecipitation studies with [35S]methionine-labeled MOLT-3 cells showed that GM1-induced CD4 down-modulation was accompanied by CD4 degradation, and this was preceded by dissociation of p56lck from CD4. GM1-induced CD4 down-modulation, dissociation of p56lck from CD4, and CD4 degradation were unaffected by staurosporine, which, on the contrary, blocked these events in response to phorbol 12-myristate 13-acetate. These observations demonstrate that the first action of GM1 is to mask epitopes located within the first two NH2-terminal domains; then, GM1 triggers protein kinase C-independent signals which cause p56lck dissociation from CD4 and the delivery of the molecule to an intracellular compartment where it is eventually degraded

    How the latent geometry of a biological network provides information on its dynamics: the case of the gene network of chronic myeloid leukaemia

    Get PDF
    Background: The concept of the latent geometry of a network that can be represented as a graph has emerged from the classrooms of mathematicians and theoretical physicists to become an indispensable tool for determining the structural and dynamic properties of the network in many application areas, including contact networks, social networks, and especially biological networks. It is precisely latent geometry that we discuss in this article to show how the geometry of the metric space of the graph representing the network can influence its dynamics.Methods: We considered the transcriptome network of the Chronic Myeloid Laeukemia K562 cells. We modelled the gene network as a system of springs using a generalization of the Hooke’s law to n-dimension (n ≥ 1). We embedded the network, described by the matrix of spring’s stiffnesses, in Euclidean, hyperbolic, and spherical metric spaces to determine which one of these metric spaces best approximates the network’s latent geometry. We found that the gene network has hyperbolic latent geometry, and, based on this result, we proceeded to cluster the nodes according to their radial coordinate, that in this geometry represents the node popularity.Results: Clustering according to radial coordinate in a hyperbolic metric space when the input to network embedding procedure is the matrix of the stiffnesses of the spring representing the edges, allowed to identify the most popular genes that are also centres of effective spreading and passage of information through the entire network and can therefore be considered the drivers of its dynamics.Conclusion: The correct identification of the latent geometry of the network leads to experimentally confirmed clusters of genes drivers of the dynamics, and, because of this, it is a trustable mean to unveil important information on the dynamics of the network. Not considering the latent metric space of the network, or the assumption of a Euclidean space when this metric structure is not proven to be relevant to the network, especially for complex networks with hierarchical or modularised structure can lead to unreliable network analysis results

    Protein Tyrosine Phosphatase Gamma (PTPγ) is a Novel Leukocyte Marker Highly Expressed by CD34+ Precursors

    Get PDF
    Protein Tyrosine Phosphatase gamma (PTPγ) is a receptor-like transmembrane protein belonging to the family of classical protein tyrosine phosphatases. PTPγ is known to regulate haematopoietic differentiation in a murine embryonic stem cells model. We have recently demonstrated that PTPγ mRNA is expressed in monocytes, tissue-localized myeloid dendritic cells and in both myeloid and plasmacytoid dendritic cells in peripheral blood. We now developed a PTPγ specific antibody that recognizes the protein by flow cytometry. PTPγ expression was detected in monocytes and both myeloid and plasmacytoid dendritic cells, while PMN showed a low but consistent staining in contrast with previous mRNA data. B cells were found to express the phosphatase while T cells were negative. In keeping with RNA data, PTPγ was detected in monocyte-derived dendritic cells and its expression rose upon LPS stimulation. Finally, we discovered that CD34+ haematopoietic precursors express high PTPγ level that drops during in vitro expansion induced by IL-3 and SCF growth factors. We therefore propose PTPγ as a new functionally regulated leukocyte marker whose role in normal and pathological context deserve further investigation
    corecore