62 research outputs found

    Solvent‐Driven Supramolecular Wrapping of Self‐Assembled Structures

    Get PDF
    Self‐assembly relies on the ability of smaller and discrete entities to spontaneously arrange into more organized systems by means of the structure‐encoded information. Herein, we show that the design of the media can play a role even more important than the chemical design. The media not only determines the self‐assembly pathway at a single‐component level, but in a very narrow solvent composition, a supramolecular homo‐aggregate can be non‐covalently wrapped by a second component that possesses a different crystal lattice. Such a process has been followed in real time by confocal microscopy thanks to the different emission colors of the aggregates formed by two isolated PtII complexes. This coating is reversible and controlled by the media composition. Single‐crystal X‐ray diffraction and molecular simulations based on coarse‐grained (CG) models allowed the understanding of the properties displayed by the different aggregates. Such findings could result in a new method to construct hierarchical supramolecular structures

    Solvent-driven chirality for luminescent self- assembled structures: experiments and theory

    Get PDF
    We describe, for a single platinum complex bearing a dipeptide moiety, a solvent-driven interconversion from twisted to straight micrometric assembled structures with different chirality. The photophysical and morphological properties of the aggregates have been investigated as well as the role of the media and concentration. A real-time visualization of the solvent-driven interconversion processes has been achieved by confocal microscopy. Finally, atomistic and coarse-grained simulations, providing results consistent with the experimental observations, allow to obtain a molecular-level insight into the interesting solvent-responsive behavior of this system

    The PLASMONX Project for advanced beam physics experiments

    Get PDF
    The Project PLASMONX is well progressing into its design phase and has entered as well its second phase of procurements for main components. The project foresees the installation at LNF of a Ti:Sa laser system (peak power > 170 TW), synchronized to the high brightness electron beam produced by the SPARC photo-injector. The advancement of the procurement of such a laser system is reported, as well as the construction plans of a new building at LNF to host a dedicated laboratory for high intensity photon beam experiments (High Intensity Laser Laboratory). Several experiments are foreseen using this complex facility, mainly in the high gradient plasma acceleration field and in the field of mono- chromatic ultra-fast X-ray pulse generation via Thomson back-scattering. Detailed numerical simulations have been carried out to study the generation of tightly focused electron bunches to collide with laser pulses in the Thomson source: results on the emitted spectra of X-rays are presented

    COVID-19 Severity in Multiple Sclerosis: Putting Data Into Context

    Get PDF
    Background and objectives: It is unclear how multiple sclerosis (MS) affects the severity of COVID-19. The aim of this study is to compare COVID-19-related outcomes collected in an Italian cohort of patients with MS with the outcomes expected in the age- and sex-matched Italian population. Methods: Hospitalization, intensive care unit (ICU) admission, and death after COVID-19 diagnosis of 1,362 patients with MS were compared with the age- and sex-matched Italian population in a retrospective observational case-cohort study with population-based control. The observed vs the expected events were compared in the whole MS cohort and in different subgroups (higher risk: Expanded Disability Status Scale [EDSS] score > 3 or at least 1 comorbidity, lower risk: EDSS score ≀ 3 and no comorbidities) by the χ2 test, and the risk excess was quantified by risk ratios (RRs). Results: The risk of severe events was about twice the risk in the age- and sex-matched Italian population: RR = 2.12 for hospitalization (p < 0.001), RR = 2.19 for ICU admission (p < 0.001), and RR = 2.43 for death (p < 0.001). The excess of risk was confined to the higher-risk group (n = 553). In lower-risk patients (n = 809), the rate of events was close to that of the Italian age- and sex-matched population (RR = 1.12 for hospitalization, RR = 1.52 for ICU admission, and RR = 1.19 for death). In the lower-risk group, an increased hospitalization risk was detected in patients on anti-CD20 (RR = 3.03, p = 0.005), whereas a decrease was detected in patients on interferon (0 observed vs 4 expected events, p = 0.04). Discussion: Overall, the MS cohort had a risk of severe events that is twice the risk than the age- and sex-matched Italian population. This excess of risk is mainly explained by the EDSS score and comorbidities, whereas a residual increase of hospitalization risk was observed in patients on anti-CD20 therapies and a decrease in people on interferon

    SARS-CoV-2 serology after COVID-19 in multiple sclerosis: An international cohort study

    Get PDF

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    ComplessitĂ  e organizzazione della funzione Compliance nelle banche italiane

    No full text
    A oltre otto anni dall’introduzione della funzione Compliance nelle banche italiane, appare evidente un processo di consolidamento della funzione nell’organizzazione aziendale e un rafforzamento del suo ruolo, frutto anche di un sempre maggiore livello di professionalizzazione di coloro che vi operano. Accanto agli elementi positivi, si manifestano tuttavia anche alcune debolezze che necessitano di interventi migliorativi. In particolare, la difficoltà di condividere procedure e metodologie di controllo, il persistere di difficoltà di coordinamento con le altre funzioni di controllo, l’assenza in molti casi di sistemi di valutazione delle performance. Un percorso di miglioramento ù stato comunque avviato anche rispetto ai risultati delle precedenti indagini sulla evoluzione della funzione Compliance.The Compliance Function in Italian banks, eight years after its establishement, has strengthened its role, also thanks the high professional level of the resources involved. Besides the positive elements, however, the Compliance Function shows some weaknesses that need improvement measures: the difficulty of sharing procedures and methodology, the relationships with other Internal control functions, the lack of a performance evaluation system

    Collapse of wet granular materials: experiments and discrete element simulations

    No full text
    The presence of water strongly affects the behaviour of a granular material especially in the transition between static and dynamic conditions in which the attractive forces between particles become lower than the inertial ones and vice versa. The water effect is important especially in the pendular state (for saturation degree lower than about 5%) in many engineering applications: in geotechnics (e.g.. in slope stability problems), in many chemical processes (e.g. wet agglomeration) or granular transport and handling (discharge from silos, clogging, etc.). In comparison with other experiments, column collapse tests1,2 allow to better focus on phenomena involved in transition phases without introducing the effects of other variables, such as angular velocity and axial dispersion of particles occurring in rotating drums, or orifice geometry in case of discharge from silos. The Discrete Element Method (DEM) is particularly suitable to simulate this kind of tests providing that a capillary law is introduced in the model and a redistribution function of the liquid volumes is implemented, as it is shown in this work. The numerical analyses performed with this improved tool enhance the comprehension of the dependence of the mechanical behaviour of granular materials on particle diameter, wetting concentration, liquid surface tensions and contact angle

    Collapse of wet granular columns: experiments and Discrete Element simulations

    No full text
    This work aims at investigating the effect of triggering and jamming due to the addition of a small quantity of fluid to the material. Collapse of dry and wet granular columns is studied both from the experimental and the numerical point of view. Wet samples of glass beads of different grain-sizes in the pendular state were packed in a rectangular box and then allowed to flow by removing a lateral wall. The dependence of the kinematics and the final state of the system on grain size and water content was particularly investigated. DEM numerical simulations were carried out in a 1:1 scale. A good qualitative agreement between experiments and DEM simulations was found with respect to the kinematic and the final slope profile. In particular, both the techniques highlight the strong effect of the liquid which decreases the run-out distance and time even for small liquid contents. This work demonstrates the suitability of the DEM approach also for the study of wet granular materials in static as well as in dynamic conditions, howeverit highlights that the water redistribution model is critical for the model outcome
    • 

    corecore