29 research outputs found

    Étude de l'implication des navettes du pyruvate dĂ©coulant du mĂ©tabolisme mitochondrial du glucose dans la rĂ©gulation de la sĂ©crĂ©tion d'insuline par les cellules bĂȘta pancrĂ©atiques

    Full text link
    Le diabĂšte est une maladie mĂ©tabolique qui se caractĂ©rise par une rĂ©sistance Ă  l’insuline des tissus pĂ©riphĂ©riques et par une incapacitĂ© des cellules ÎČ pancrĂ©atiques Ă  sĂ©crĂ©ter les niveaux d’insuline appropriĂ©s afin de compenser pour cette rĂ©sistance. Pour mieux comprendre les mĂ©canismes dĂ©ficients dans les cellules ÎČ des patients diabĂ©tiques, il est nĂ©cessaire de comprendre et de dĂ©finir les mĂ©canismes impliquĂ©s dans le contrĂŽle de la sĂ©crĂ©tion d’insuline en rĂ©ponse au glucose. Dans les cellules ÎČ pancrĂ©atiques, le mĂ©tabolisme du glucose conduit Ă  la production de facteurs de couplage mĂ©tabolique, comme l’ATP, nĂ©cessaires Ă  la rĂ©gulation de l’exocytose des vĂ©sicules d’insuline. Le mĂ©canisme par lequel la production de l’ATP par le mĂ©tabolisme oxydatif du glucose dĂ©clenche l’exocytose des vĂ©sicules d’insuline est bien dĂ©crit dans la littĂ©rature. Cependant, il ne peut Ă  lui seul rĂ©guler adĂ©quatement la sĂ©crĂ©tion d’insuline. Le malonyl-CoA et le NADPH sont deux autres facteurs de couplage mĂ©taboliques qui ont Ă©tĂ© suggĂ©rĂ©s afin de relier le mĂ©tabolisme du glucose Ă  la rĂ©gulation de la sĂ©crĂ©tion d’insuline. Les mĂ©canismes impliquĂ©s demeurent cependant Ă  ĂȘtre caractĂ©risĂ©s. Le but de la prĂ©sente thĂšse Ă©tait de dĂ©terminer l’implication des navettes du pyruvate, dĂ©coulant du mĂ©tabolisme mitochondrial du glucose, dans la rĂ©gulation de la sĂ©crĂ©tion d’insuline. Dans les cellules ÎČ, les navettes du pyruvate dĂ©coulent de la combinaison des processus d’anaplĂ©rose et de cataplĂ©rose et permettent la transduction des signaux mĂ©taboliques provenant du mĂ©tabolisme du glucose. Dans une premiĂšre Ă©tude, nous nous sommes intĂ©ressĂ©s au rĂŽle de la navette pyruvate/citrate dans la rĂ©gulation de la sĂ©crĂ©tion d’insuline en rĂ©ponse au glucose, puisque cette navette conduit Ă  la production dans le cytoplasme de deux facteurs de couplage mĂ©tabolique, soit le malonyl-CoA et le NADPH. De plus, la navette pyruvate/citrate favorise le flux mĂ©tabolique Ă  travers la glycolyse en rĂ©oxydation le NADH. Une Ă©tude effectuĂ©e prĂ©cĂ©demment dans notre laboratoire avait suggĂ©rĂ© la prĂ©sence de cette navette dans les cellules ÎČ pancrĂ©atique. Afin de tester notre hypothĂšse, nous avons ciblĂ© trois Ă©tapes de cette navette dans la lignĂ©e cellulaire ÎČ pancrĂ©atique INS 832/13, soit la sortie du citrate de la mitochondrie et l’activitĂ© de l’ATP-citrate lyase (ACL) et l’enzyme malique (MEc), deux enzymes clĂ©s de la navette pyruvate/citrate. L’inhibition de chacune de ces Ă©tapes par l’utilisation d’un inhibiteur pharmacologique ou de la technologie des ARN interfĂ©rant a corrĂ©lĂ© avec une rĂ©duction significative de la sĂ©crĂ©tion d’insuline en rĂ©ponse au glucose. Les rĂ©sultats obtenus suggĂšrent que la navette pyruvate/citrate joue un rĂŽle critique dans la rĂ©gulation de la sĂ©crĂ©tion d’insuline en rĂ©ponse au glucose. ParallĂšlement Ă  notre Ă©tude, deux autres groupes de recherche ont suggĂ©rĂ© que les navettes pyruvate/malate et pyruvate/isocitrate/α-cĂ©toglutarate Ă©taient aussi importantes pour la sĂ©crĂ©tion d’insuline en rĂ©ponse au glucose. Ainsi, trois navettes dĂ©coulant du mĂ©tabolisme mitochondrial du glucose pourraient ĂȘtre impliquĂ©es dans le contrĂŽle de la sĂ©crĂ©tion d’insuline. Le point commun de ces trois navettes est la production dans le cytoplasme du NADPH, un facteur de couplage mĂ©tabolique possiblement trĂšs important pour la sĂ©crĂ©tion d’insuline. Dans les navettes pyruvate/malate et pyruvate/citrate, le NADPH est formĂ© par MEc, alors que l’isocitrate dĂ©shydrogĂ©nase (IDHc) est responsable de la production du NADPH dans la navette pyruvate/isocitrate/α-cĂ©toglutarate. Dans notre premiĂšre Ă©tude, nous avions dĂ©montrĂ© l’importance de l’expression de ME pour la sĂ©crĂ©tion adĂ©quate d’insuline en rĂ©ponse au glucose. Dans notre deuxiĂšme Ă©tude, nous avons testĂ© l’implication de IDHc dans les mĂ©canismes de rĂ©gulation de la sĂ©crĂ©tion d’insuline en rĂ©ponse au glucose. La diminution de l’expression de IDHc dans les INS 832/13 a stimulĂ© la sĂ©crĂ©tion d’insuline en rĂ©ponse au glucose par un mĂ©canisme indĂ©pendant de la production de l’ATP par le mĂ©tabolisme oxydatif du glucose. Ce rĂ©sultat a ensuite Ă©tĂ© confirmĂ© dans les cellules dispersĂ©es des Ăźlots pancrĂ©atiques de rat. Nous avons aussi observĂ© dans notre modĂšle que l’incorporation du glucose en acides gras Ă©tait augmentĂ©e, suggĂ©rant que la diminution de l’activitĂ© de IDHc favorise la redirection du mĂ©tabolisme de l’isocitrate Ă  travers la navette pyruvate/citrate. Un mĂ©canisme de compensation Ă  travers la navette pyruvate/citrate pourrait ainsi expliquer la stimulation de la sĂ©crĂ©tion d’insuline observĂ©e en rĂ©ponse Ă  la diminution de l’expression de IDHc. Les travaux effectuĂ©s dans cette deuxiĂšme Ă©tude remettent en question l’implication de l’activitĂ© de IDHc, et de la navette pyruvate/isocitrate/α-cĂ©toglutarate, dans la transduction des signaux mĂ©taboliques reliant le mĂ©tabolisme du glucose Ă  la sĂ©crĂ©tion d’insuline. La navette pyruvate/citrate est la seule des navettes du pyruvate Ă  conduire Ă  la production du malonyl-CoA dans le cytoplasme des cellules ÎČ. Le malonyl-CoA rĂ©gule le mĂ©tabolisme des acides gras en inhibant la carnitine palmitoyl transfĂ©rase 1, l’enzyme limitante dans l’oxydation des acides gras. Ainsi, l’élĂ©vation des niveaux de malonyl-CoA en rĂ©ponse au glucose entraĂźne une redirection du mĂ©tabolisme des acides gras vers les processus d’estĂ©rification puis de lipolyse. Plus prĂ©cisĂ©ment, les acides gras sont mĂ©tabolisĂ©s Ă  travers le cycle des triglycĂ©rides/acides gras libres (qui combinent les voies mĂ©taboliques d’estĂ©rification et de lipolyse), afin de produire des molĂ©cules lipidiques signalĂ©tiques nĂ©cessaires Ă  la modulation de la sĂ©crĂ©tion d’insuline. Des Ă©tudes effectuĂ©es prĂ©cĂ©demment dans notre laboratoire ont dĂ©montrĂ© que l’activitĂ© lipolytique de HSL (de l’anglais hormone-sensitive lipase) Ă©tait importante, mais non suffisante, pour la rĂ©gulation de la sĂ©crĂ©tion d’insuline. Dans une Ă©tude complĂ©mentaire, nous nous sommes intĂ©ressĂ©s au rĂŽle d’une autre lipase, soit ATGL (de l’anglais adipose triglyceride lipase), dans la rĂ©gulation de la sĂ©crĂ©tion d’insuline en rĂ©ponse au glucose et aux acides gras. Nous avons dĂ©montrĂ© que ATGL est exprimĂ© dans les cellules ÎČ pancrĂ©atiques et que son activitĂ© contribue significativement Ă  la lipolyse. Une rĂ©duction de son expression dans les cellules INS 832/13 par RNA interfĂ©rant ou son absence dans les Ăźlots pancrĂ©atiques de souris dĂ©ficientes en ATGL a conduit Ă  une rĂ©duction de la sĂ©crĂ©tion d’insuline en rĂ©ponse au glucose en prĂ©sence ou en absence d’acides gras. Ces rĂ©sultats appuient l’hypothĂšse que la lipolyse est une composante importante de la rĂ©gulation de la sĂ©crĂ©tion d’insuline dans les cellules ÎČ pancrĂ©atiques. En conclusion, les rĂ©sultats obtenus dans cette thĂšse suggĂšrent que la navette pyruvate/citrate est importante pour la rĂ©gulation de la sĂ©crĂ©tion d’insuline en rĂ©ponse au glucose. Ce mĂ©canisme impliquerait la production du NADPH et du malonyl-CoA dans le cytoplasme en fonction du mĂ©tabolisme du glucose. Cependant, nos travaux remettent en question l’implication de la navette pyruvate/isocitrate/α-cĂ©toglutarate dans la rĂ©gulation de la sĂ©crĂ©tion d’insuline. Le rĂŽle exact de IDHc dans ce processus demeure cependant Ă  ĂȘtre dĂ©terminĂ©. Finalement, nos travaux ont aussi dĂ©montrĂ© un rĂŽle pour ATGL et la lipolyse dans les mĂ©canismes de couplage mĂ©tabolique rĂ©gulant la sĂ©crĂ©tion d’insuline.Diabetes is a metabolic disorder characterized by a combination of insulin resistance in peripheral tissues with an inappropriate amount of insulin secreted by the pancreatic ÎČ-cells to overcome this insulin resistance. In order to help find a cure for diabetic patients, we need to elucidate the mechanisms underlying the proper control of insulin secretion in response to glucose. In pancreatic ÎČ-cells, glucose metabolism leads to the production of metabolic coupling factors, like ATP, implicated in the regulation of insulin vesicle exocytosis. The mechanism linking ATP production by the oxidative metabolism of glucose to the triggering of insulin release that involves Ca2+ and metabolically sensitive K+ channels is relatively well known. Other mechanisms are also involved in the regulation of insulin secretion in response to glucose and other nutrients, such as fatty acids and some amino acids. Malonyl-CoA and NADPH are two metabolic coupling factors that have been suggested to be implicated in the transduction of metabolic signaling coming from glucose metabolism to control the release of insulin granules. However, the mechanisms implicated remained to be defined. The goal of the present thesis was to further our understanding of the role of the pyruvate shuttles, derived from mitochondrial glucose metabolism, in the regulation of insulin secretion. In pancreatic ÎČ-cells, pyruvate shuttles are produced by the combination of anaplerosis and cataplerosis processes and are thought to link glucose metabolism to the regulation of insulin secretion by the production metabolic coupling factors. In our first study, we wished to determine the role of the pyruvate/citrate shuttle in the regulation of glucose-induced insulin secretion. The pyruvate/citrate shuttle leads to the production in the cytoplasm of both malonyl-CoA and NADPH and also stimulates the metabolic flux through the glycolysis by re-oxidating NADH. A previous study done in the group of Dr Prentki has suggested the feasibility of the pyruvate/citrate shuttle in pancreatic ÎČ-cells. To investigate our hypothesis, we inhibited three different steps of this shuttle in INS 832/13 cells, a pancreatic ÎČ-cell line. Specifically, we repressed, using pharmacological inhibitors or RNA interference technology, the mitochondrial citrate export to the cytoplasm and the expression of malic enzyme (MEc) and ATP-citrate lyase (ACL), two key enzymes implicated in the pyruvate/citrate shuttle. The inhibition of each of those steps resulted in a reduction of glucose-induced insulin secretion. Our results underscore the importance of the pyruvate/citrate shuttle in the pancreatic ÎČ-cell signaling and the regulation of insulin secretion in response to glucose. Other research groups are also interested in studying the implication of pyruvate cycling processes in the regulation of insulin exocytosis. They suggested a role for the pyruvate/malate and the pyruvate/isocitrate/α-ketoglutarate shuttles. Therefore, three different shuttles derived from the mitochondrial glucose metabolism could be implicated in the regulation of glucose-induced insulin release. All those three shuttles can produce NADPH in the cytoplasm. In the pyruvate/malate and the pyruvate/citrate shuttles, the NADPH is formed by cytosolic malic enzyme (MEc), whereas in the pyruvate/isocitrate/α-ketoglutarate, NADPH is produced by cytosolic isocitrate dehydrogenease (IDHc). In our first study, we established the importance of MEc expression in the regulation of insulin secretion. In our second study, we wanted to investigate the importance of IDHc expression in glucose-induced insulin secretion. The reduction of IDHc expression in INS 832/13 cells stimulated insulin release in response to glucose by a mechanism independent of ATP production coming from glucose oxidative metabolism. This stimulation was also observed in isolated rat pancreatic cells. IDHc knockdown cells showed elevated glucose incorporation into fatty acids, suggesting that isocitrate metabolism could be redirected into the pyruvate/citrate shuttle in these cells. Taken together, these results suggest that IDHc is not essential for glucose-induced insulin secretion and that a compensatory mechanism, probably involving the pyruvate/citrate shuttle, explains the enhanced insulin secretion in IDHc knockdown cells . The pyruvate/citrate shuttle is the only pyruvate shuttle that is linked to the production of malonyl-CoA. Malonyl-CoA is a known inhibitor of carnitine palmitoyl transferase 1, the rate-limiting step in fatty acid oxidation. Therefore, the raising level of malonyl-CoA in response to glucose redirects the metabolism of fatty acids into the triglycerides/free fatty acids cycle which combine esterification and lipolysis processes. Previous studies done in the laboratory of Dr Prentki supported the concept that lipolysis of endogenous lipid stores is an important process for the appropriate regulation of insulin secretion. A first lipase, hormone-sensitive lipase (HSL), has been identified in pancreatic ÎČ-cells. HSL expression is important, but not sufficient, for the ÎČ-cell lipolysis activity. In a complementary study, we have investigated the role of another lipase, adipose triglyceride lipase (ATGL), in the regulation of insulin secretion in response to glucose and to fatty acids. We first demonstrated the expression and the activity of ATGL in pancreatic ÎČ-cells. Reducing ATGL expression using shRNA in INS 832/13 cells caused a reduction in insulin secretion in response to glucose and to fatty acids. Pancreatic islets from ATGL null mice also showed defect in insulin release in response to glucose and to fatty acids. The results demonstrate the importance of ATGL and intracellular lipid signaling in the regulation of insulin secretion. In conclusion, the work presented in this thesis suggests a role for the pyruvate/citrate shuttle in the regulation of insulin secretion in response to glucose. This mechanism possibly implicates the production of NADPH and malonyl-CoA in the cytoplasm. The results also points to a re-evaluation of the role of IDHc in glucose-induced insulin secretion. The precise role of IDHc in pancreatic ÎČ-cells needs to be determined. Finally, the data have also documented a role of lipolysis and ATGL in the coupling mechanisms of insulin secretion in response to both fuel and non-fuel stimuli

    Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes

    Get PDF
    Aims/hypothesis: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. Methods: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. Results: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. Conclusions/interpretation: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNA

    Circulating microRNAs as novel biomarkers for diabetes mellitus.

    Get PDF
    Diabetes mellitus is characterized by insulin secretion from pancreatic ÎČ cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of ÎČ cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect ÎČ-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications

    New emerging tasks for microRNAs in the control of ÎČ-cell activities

    Get PDF
    MicroRNAs are key regulators of ÎČ-cell physiology. They participate to the differentiation of insulin-producing cells and are instrumental for the acquisition of their unique secretory properties. Moreover, they contribute to the adaptation of ÎČ-cells to conditions of increased insulin demand and, if expressed at inappropriate levels, certain microRNAs cause ÎČ-cell dysfunction and promote the development of different forms of diabetes mellitus. While these functions are increasingly better understood, additional tasks for these small non-coding RNAs have been recently unveiled. Thus, microRNAs are emerging as signaling molecules of a novel exosome-mediated cell-to-cell communication mode permitting a coordinated response of the ÎČ-cells to inflammatory conditions and to modifications in the insulin demand. These discoveries raise a number of important issues that once addressed promise to shed new light on the molecular mechanism governing the functions of the ÎČ-cells under normal and disease states. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos FernĂĄndez-Hernando and Yajaira SuĂĄrez

    Role of islet microRNAs in diabetes: which model for which question?

    No full text
    MicroRNAs are important regulators of gene expression. The vast majority of the cells in our body rely on hundreds of these tiny non-coding RNA molecules to precisely adjust their protein repertoire and faithfully accomplish their tasks. Indeed, alterations in the microRNA profile can lead to cellular dysfunction that favours the appearance of several diseases. A specific set of microRNAs plays a crucial role in pancreatic beta cell differentiation and is essential for the fine-tuning of insulin secretion and for compensatory beta cell mass expansion in response to insulin resistance. Recently, several independent studies reported alterations in microRNA levels in the islets of animal models of diabetes and in islets isolated from diabetic patients. Surprisingly, many of the changes in microRNA expression observed in animal models of diabetes were not detected in the islets of diabetic patients and vice versa. These findings are unlikely to merely reflect species differences because microRNAs are highly conserved in mammals. These puzzling results are most probably explained by fundamental differences in the experimental approaches which selectively highlight the microRNAs directly contributing to diabetes development, the microRNAs predisposing individuals to the disease or the microRNAs displaying expression changes subsequent to the development of diabetes. In this review we will highlight the suitability of the different models for addressing each of these questions and propose future strategies that should allow us to obtain a better understanding of the contribution of microRNAs to the development of diabetes mellitus in humans

    A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic ß-cells

    Get PDF
    Cytosolic NADPH may act as one of the signals that couple glucose metabolism to insulin secretion in the pancreatic ß-cell. NADPH levels in the cytoplasm are largely controlled by the cytosolic isoforms of malic enzyme and isocitrate dehydrogenase (IDHc). Some studies have provided evidence for a role of malic enzyme in glucose-induced insulin secretion (GIIS) via pyruvate cycling, but the role of IDHc in ß-cell signaling is unsettled. IDHc is an established component of the isocitrate/α-ketoglutarate shuttle that transfers reducing equivalents (NADPH) from the mitochondrion to the cytosol. This shuttle is energy consuming since it is coupled to nicotinamide nucleotide transhydrogenase that uses the mitochondrial proton gradient to produce mitochondrial NADPH and NAD(+) from NADP(+) and NADH. To determine whether flux through IDHc is positively or negatively linked to GIIS, we performed RNAi knockdown experiments in ß-cells. Reduced IDHc expression in INS 832/13 cells and isolated rat islet ß-cells resulted in enhanced GIIS. This effect was mediated at least in part via the KATP-independent amplification arm of GIIS. IDHc knockdown in INS 832/13 cells did not alter glucose oxidation but it reduced fatty acid oxidation and increased lipogenesis from glucose. Metabolome profiling in INS 832/13 cells showed that IDHc knockdown increased isocitrate and NADP(+) levels. It also increased the cellular contents of several metabolites linked to GIIS, in particular some Krebs cycle intermediates, acetyl-CoA, glutamate, cAMP and ATP. The results identify IDHc as a component of the emerging pathways that negatively regulate GIIS
    corecore