18 research outputs found

    Development of Highly Nutritional Breads with By-Products of Chia (Salvia hispanica L.) Seeds

    Get PDF
    The effect of the incorporation of various types of residual chia flour (whole, semi-defatted and defatted, with or without mucilage) on the technological quality of bread was investigated. The various types of chia flour were used to substitute 5 and 10% wt/wt of wheat flour in the bread formulations. The water absorption, dough development time and stability of blends with the presence of mucilage and the incorporation of 10% wt/wt of chia flour demonstrated the highest values in comparison with the other ones. The specific volume of the flour variants with 5% wt/wt of chia flour with mucilage were similar to the control bread; while those formulated with chia flour without mucilage exhibited a lesser volume. The incorporation of 10% wt/wt of chia flour in the formulations caused a decrease in the technological quality of the bread as expected. The bread crust and crumb colour parameters were mainly influenced by the level of chia flour substitution, which resulted in a decrease in lightness and h values. The substitution of wheat flour with 5% wt/wt of chia flour counterparts with mucilage improved the technological quality of the breads. The different oil content of the chia flours did not show any significant influence on overall quality or texture.Fil: Guiotto, Estefania Nancy. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Consejo Superior de Investigaciones Científicas; EspañaFil: Tomás, Mabel Cristina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Haros, Claudia Monika. Consejo Superior de Investigaciones Científicas; Españ

    Chemical and technological properties of bologna-type sausages with added black quinoa wet-milling coproducts as binder replacer

    Get PDF
    The objective of this study was to evaluate different strategies for adding 3% black quinoa (either as whole seeds or as a fiber-rich fraction of quinoa from its wet-milling process) to bologna-type sausage. This addition was evaluated in terms of its influence on nutritional composition and technological properties (emulsion stability, pH, water activity, color changes, textural properties, residual nitrite level and lipid oxidation). Both strategies resulted in commercially feasible sausages with increased nutritive properties (dietary fiber) and with some modifications in their technological properties. Compared with control sausages, they showed better emulsion stability, lower water activity and lipid oxidation values (interesting properties for sausages shelf-life). Color changes were more evident when the fiber-rich fraction was added. The residual nitrite level increased with the addition of quinoa so that it would be necessary to incorporate less nitrites, or it might even be unnecessary, contributing to the production of more natural products

    Studying the Impact of Different Field Environmental Conditions on Seed Quality of Quinoa: The Case of Three Different Years Changing Seed Nutritional Traits in Southern Europe

    Get PDF
    Chenopodium quinoa Willd (quinoa) has acquired an increased agronomical and nutritional relevance due to the capacity of adaptation to different environments and the exceptional nutritional properties of their seeds. These include high mineral and protein contents, a balanced amino acid composition, an elevated antioxidant capacity related to the high phenol content, and the absence of gluten. Although it is known that these properties can be determined by the environment, limited efforts have been made to determine the exact changes occurring at a nutritional level under changing environmental conditions in this crop. To shed light on this, this study aimed at characterizing variations in nutritional-related parameters associated with the year of cultivation and different genotypes. Various nutritional and physiological traits were analyzed in seeds of different quinoa cultivars grown in the field during three consecutive years. We found differences among cultivars for most of the nutritional parameters analyzed. It was observed that the year of cultivation was a determinant factor in every parameter studied, being 2018 the year with lower yields, germination rates, and antioxidant capacity, but higher seed weights and seed protein contents. Overall, this work will greatly contribute to increase our knowledge of the impact of the environment and genotype on the nutritional properties of quinoa seeds, especially in areas that share climatic conditions to Southern Europe.This work was supported by the Ministerio de Ciencia e Innovación (MICINN, Spain) (PID2019-105748RA-I00), the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad Autónoma de Madrid in the line of action encouraging youth research doctors, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation) (SI1/PJI/2019-00124), the CYTED (ValSe-Food 119RT0567), the FPI UAM Fellowship Programme 2019 (to SG-R), and the Ramón y Cajal Programme 2019 (to MR).Peer reviewe

    Characterization of Quinoa Fibre-Rich Fractions Isolated via Wet-Milling and Their Application in Food

    No full text
    Dietary fibre intake has beneficial effects on immunonutritional health and prevents the development of chronic non-communicable diseases such as obesity and diabetes, cardiovascular disease, and cancer. Currently, dietary fibre consumption worldwide is below the WHO recommended daily intake of 25 g. An excellent source of dietary fibre is the fibre-rich fractions of quinoa, which have a high technological potential, nutritional value, and biological activity. This fraction can be isolated via wet-milling, which offers a higher yield and recovery of the main chemical components of cereals/pseudocereals with a higher purity than those obtained via dry-milling. The objective of this work was the isolation of fibre-rich fractions of Royal Bolivian quinoa (white, red, and black) obtained via wet-milling and their characterization as technofunctional ingredients in the formulation of cereal-based food products. The extraction yield of the fibre fraction and its proximal chemical composition were determined, in addition to phytic acid content; minerals such as calcium, iron, and zinc; and technofunctional properties (particle size distribution, water and oil holding capacity, and swelling capacity). All fibre fractions isolated via wet-milling could be used as food ingredients. In particular, the fibre-rich fraction of black quinoa contains the highest amount of insoluble fibre. However, from a technological point of view, red quinoa fibre could be the most suitable for inclusion in the formulation of food matrices due to its high water and oil retention capacity, as well as its swelling capacity. The incorporation of a low proportion of quinoa dietary fibre (5–10%) allows increasing the nutritional profile of cereal-based food products

    Obtaining Quinoa Germ via Wet Milling and Extracting Its Oil via Cold Pressing

    No full text
    Wet milling is a fractionation process widely used in the corn industry, which allows the separation of its main chemical components (starch, proteins, fiber and lipids) with high efficiency and purity compared to dry milling. The first stage of this process consists of maceration; after softening the grain, the actual milling is carried out, and the germ is separated by flotation because of its high lipid content. The chemical composition of pseudocereals is similar to that of cereals, hence their name, so they could be processed in the same way. In this way, the traditional corn wet milling process was adapted to quinoa. The objective of this work is to isolate the germ of red Bolivian Royal quinoa using wet milling, and evaluate its efficiency and physicochemical characteristics due to its large size and nutrient concentration. By cold pressing the red quinoa germ, crude oil was obtained and characterized in terms of: Acid Index, Iodine Index, Saponification Index, K Index, Refractive Index (20 °C) and fatty acid composition, determined by gas chromatography coupled to a mass detector (GC-MS). This profile was compared with the fatty acid profile of the solvent-extracted quinoa oil, and it was observed that there were no significant differences between the two oil samples. In addition, the sample obtained via cold pressing showed similar characteristics to corn oil, except for a higher Saponification Index and proportion of linolenic acid (omega-3)

    Combined Effect of Chia Flour and Soy Lecithin Incorporation on Nutritional and Technological Quality of Fresh Bread and during Staling

    No full text
    The objectives of the present investigation are to study the interaction and optimize the blend composition of flour of grinded Chia seeds, combined to Soy lecithin, a bread making improver, in a way to enhance the nutritional/functional value of bread without impairing its technological quality and to delay its staling rate. Nine formulations were prepared following a Central Composite Design. Technological attributes were evaluated both for fresh and stored bread. In the Response Surface Methodology (RSM) a desirability function identified the optimum doses of chia and lecithin incorporation to obtain the highest specific volume and the lowest crumb firmness. Compared to the control, samples with chia and lecithin significantly increased the nutritional value of bread. An innovative and interesting synergy was found in lecithin/chia combination to enhance the specific volume, to reduce the initial crumb firmness and to delay bread staling by retarding crumb firmness and reducing its water loss during storage. Using the RSM, the optimum blend containing (4.04%-Chia/1%-Lecithin) showed fresh bread with maximum specific volume and minimum crumb firmness. Whereas, bread combining the optimum blend (3.43%-Chia/1%-Lecithin) and stored for two days at room temperature showed the minimum crumb firmness

    Inclusion of Salvia hispanica L. and Chenopodium quinoa into bread formulations improves metabolic imbalances derived from a high-fat intake in hyperglycaemic mice

    No full text
    High-energy intake causes imbalances in nutrient homeostasis contributing to a high prevalence of metabolic chronic diseases. The extent to what metabolic imbalances can be ameliorated by the inclusion of immunonutritional ingredients obtained from flours favouring nutrient and calorie management remains poorly understood. Herein, it is demonstrated that partial replacement of wheat flour (WB) with that from Chenopodium quinoa varieties [red (RQ, 25% w/w) and white (WQ, 25% w/w)] as well as from Salvia hispanica L., [whole (Ch, 20% w/w) and semi-defatted (Ch_D, 20% w/w)] in bread formulations ameliorates the metabolic and inflammation consequences of high-fat diet consumption in hyperglycaemic animals. Feeding animals with bread formulations replacing wheat flour effectively reduced insulin resistance (by 2-fold, HOMAir). The reduction in starch content did not appear as a determinant of controlling HOMAir. Only animals fed with RQ and Ch diet displayed increased plasma levels of triglycerides, which significantly contributed to mitigate HFD-induced hepatic lipid peroxidation. The latter was increased in animals receiving Ch_D diet, where PUFAs were eliminated from chia's flour. Feeding with WQ and Ch samples caused an upward trend in hepatic TNF-α and IL-6 levels. Despite similarities between immunonutritional agonists in animals fed with RQ and WQ, IL-17 levels were quantified higher for animals fed with WQ. All bread formulations except Ch_D samples significantly increased the hepatic granulocyte–monocyte colony stimulation factor levels. These results indicated that replacement of wheat flour with that from quinoa and chia improved the metabolic imbalances in hyperglycaemic animals.This work was financially supported by grants QuiSalhis-Food (AGL2016-75687-C2-1-R) from the Ministry of Science, Innovation and Universities (MICIU) and CYTED, LA ValSe-Food (119RT0S67). The contract given to R. Selma-Gracia as part of LINCE (PROMETEO/2017/189) by the Generalitat Valenciana (Spain) is gratefully acknowledged.Peer reviewe

    Enrichment of Wholemeal Rye Bread with Plant Sterols: Rheological Analysis, Optimization of the Production, Nutritional Profile and Starch Digestibility

    No full text
    Bread is one of the staple foods of many countries, and its enrichment with bioactive compounds is trending. This phenomenon is focused on breads with a good nutritional profile, such as wholemeal rye bread (WRB), in which enrichment with plant sterols (PSs) is allowed in accordance with European regulations. The objective of the present study was to optimize the production of a WRB enriched with PS (PS-WRB) and to evaluate the proximate composition and starch digestibility as an indicator of nutritional quality. The rheological analysis showed that the bread dough presents satisfactory farinographic properties (dough development time 6 min; stability 4 min; degree of softening 100 Brabender units) but high water absorption (67%). The PS-WRB is high in dietary fiber and low in protein (20.4 and 7.7% w/w, dry basis, respectively) compared with other cereals reported in the scientific literature. In turn, a low starch proportion was hydrolyzed during the simulated digestion (59.9% of total starch), being also slowly hydrolyzed, as deduced from the rapidly digestible starch value (56.5% of total starch). In conclusion, WRB is a suitable matrix for PS enrichment, which allows for obtaining a product with a good nutritional profile and potential health benefits

    Preface of IV Conference Ia ValSe-Food CYTED and VII Symposium Chia-Link

    No full text
    We want to walk the full path, with a firm step at each stage, following Machado\u27s verses: “Walker there is no path, you make the path as you go” [...

    Statement of Peer Review

    No full text
    In submitting conference proceedings to Biology and Life Sciences Forum, the volume editors of the proceedings certify that all papers published in this volume have been subjected to peer review administered by the volume editors relative to the publisher [...
    corecore