49 research outputs found

    Image size influences visual search and perception of hemorrhages when reading cranial CT: an eye tracking study

    Get PDF
    Objectives: To explore reader gaze, performance and preference during interpretation of cranial computed tomography (cCT) in stack mode at two different sizes. Background: Digital display of medical images allows for the manipulation of many imaging factors, like image size, by the radiologists, yet it is often not known what display parameters better suit human perception. Materials and Methods: Twenty-one radiologists provided informed consent to be eye tracked while reading 20 cCT cases. Half of these cases were presented at a size of 14x14 cm (512x512 pixels), half at 28x28 cm (1024x1024 pixels). Visual search, performance and preference for the two image sizes were assessed. Results: When reading small images significantly fewer, but longer fixations were observed, and these covered significantly more slices. Time to first fixation of True Positive findings was faster in small images, but dwell time on true findings was longer. Readers made more False Positive decisions in small images, but no overall difference in either JAFROC or reading time was found. Conclusions: Overall performance is not affected by image size. However, small stack mode cCT images may better support the use of motion perception and acquiring an overview, whereas large stack mode cCT images seem better suited for detailed analyses. Application: Subjective and eye tracking data suggest that image size influences how images are searched and that different search strategies might be beneficial under different circumstances

    Special Section Editorial : Artificial Intelligence for medical imaging in clinical practice

    Get PDF
    Artificial-intelligence-driven technologies have shown potential for transforming the landscape of clinical practice, offering innovative solutions to longstanding challenges in diagnosis, treatment, and patient care. In the field of medical imaging, numerous AI-enabled devices have been approved by the Food and Drug Administration for marketing in the United States.1 It remains to be seen, however, how widely these devices will be adopted for clinical use and how they will impact clinical practice

    Diagnosis of major cancer resection specimens with virtual slides: Impact of a novel digital pathology workstation

    Get PDF
    Digital pathology promises a number of benefits in efficiency in surgical pathology, yet the longer time required to review a virtual slide than a glass slide currently represents a significant barrier to the routine use of digital pathology. We aimed to create a novel workstation that enables pathologists to view a case as quickly as on the conventional microscope. The Leeds Virtual Microscope (LVM) was evaluated using a mixed factorial experimental design. Twelve consultant pathologists took part, each viewing one long cancer case (12-25 slides) on the LVM and one on a conventional microscope. Total time taken and diagnostic confidence were similar for the microscope and LVM, as was the mean slide viewing time. On the LVM, participants spent a significantly greater proportion of the total task time viewing slides and revisited slides more often. The unique design of the LVM, enabling real-time rendering of virtual slides while providing users with a quick and intuitive way to navigate within and between slides, makes use of digital pathology in routine practice a realistic possibility. With further practice with the system, diagnostic efficiency on the LVM is likely to increase yet more

    Effect of display resolution on time to diagnosis with virtual pathology slides in a systematic search task

    Get PDF
    Performing diagnoses using virtual slides can take pathologists significantly longer than with glass slides, presenting a significant barrier to the use of virtual slides in routine practice. Given the benefits in pathology workflow efficiency and safety that virtual slides promise, it is important to understand reasons for this difference and identify opportunities for improvement. The effect of display resolution on time to diagnosis with virtual slides has not previously been explored. The aim of this study was to assess the effect of display resolution on time to diagnosis with virtual slides. Nine pathologists participated in a counterbalanced crossover study, viewing axillary lymph node slides on a microscope, a 23-in 2.3-megapixel single-screen display and a three-screen 11-megapixel display consisting of three 27-in displays. Time to diagnosis and time to first target were faster on the microscope than on the single and three-screen displays. There was no significant difference between the microscope and the three-screen display in time to first target, while the time taken on the single-screen display was significantly higher than that on the microscope. The results suggest that a digital pathology workstation with an increased number of pixels may make it easier to identify where cancer is located in the initial slide overview, enabling quick location of diagnostically relevant regions of interest. However, when a comprehensive, detailed search of a slide has to be made, increased resolution may not offer any additional benefit

    Editorial: Reviews in breast cancer

    Get PDF

    Computer-based image analysis in breast pathology

    No full text
    Whole slide imaging (WSI) has the potential to be utilized in telepathology, teleconsultation, quality assurance, clinical education, and digital image analysis to aid pathologists. In this paper, the potential added benefits of computer-assisted image analysis in breast pathology are reviewed and discussed. One of the major advantages of WSI systems is the possibility of doing computer-based image analysis on the digital slides. The purpose of computer-assisted analysis of breast virtual slides can be (i) segmentation of desired regions or objects such as diagnostically relevant areas, epithelial nuclei, lymphocyte cells, tubules, and mitotic figures, (ii) classification of breast slides based on breast cancer (BCa) grades, the invasive potential of tumors, or cancer subtypes, (iii) prognosis of BCa, or (iv) immunohistochemical quantification. While encouraging results have been achieved in this area, further progress is still required to make computer-based image analysis of breast virtual slides acceptable for clinical practice

    Retrospective review of the drop in observer detection performance over time in lesion-enriched experimental studies.

    Get PDF
    The vigilance decrement describes a decrease in sensitivity or increase in specificity with time on task. It has been observed in a variety of repetitive visual tasks, but little is known about these patterns in radiologists. We investigated whether there is systematic variation in performance over the course of a radiology reading session. We re-analyzed data from six previous lesion-enriched radiology studies. Studies featured 8-22 participants assessing 27-100 cases (including mammograms, chest CT, chest x-ray, and bone x-ray) in a reading session. Changes in performance and speed as the reading session progressed were analyzed using mixed effects models. Time taken per case decreased 9-23% as the reading session progressed (p < 0.005 for every study). There was a sensitivity decrease or specificity increase over the course of reading 100 chest x-rays (p = 0.005), 60 bone fracture x-rays (p = 0.03), and 100 chest CT scans (p < 0.0001). This effect was not found in the shorter mammography sessions with 27 or 50 cases. We found evidence supporting the hypothesis that behavior and performance may change over the course of reading an enriched test set. Further research is required to ascertain whether this effect is present in radiological practice

    Determining image processing features describing the appearance of challenging mitotic figures and miscounted nonmitotic objects

    No full text
    Context: Previous studies showed that the agreement among pathologists in recognition of mitoses in breast slides is fairly modest. Aims: Determining the significantly different quantitative features among easily identifiable mitoses, challenging mitoses, and miscounted nonmitoses within breast slides and identifying which color spaces capture the difference among groups better than others. Materials and Methods: The dataset contained 453 mitoses and 265 miscounted objects in breast slides. The mitoses were grouped into three categories based on the confidence degree of three pathologists who annotated them. The mitoses annotated as “probably a mitosis” by the majority of pathologists were considered as the challenging category. The miscounted objects were recognized as a mitosis or probably a mitosis by only one of the pathologists. The mitoses were segmented using k-means clustering, followed by morphological operations. Morphological, intensity-based, and textural features were extracted from the segmented area and also the image patch of 63 × 63 pixels in different channels of eight color spaces. Holistic features describing the mitoses' surrounding cells of each image were also extracted. Statistical Analysis Used: The Kruskal–Wallis H-test followed by the Tukey-Kramer test was used to identify significantly different features. Results: The results indicated that challenging mitoses were smaller and rounder compared to other mitoses. Among different features, the Gabor textural features differed more than others between challenging mitoses and the easily identifiable ones. Sizes of the non-mitoses were similar to easily identifiable mitoses, but nonmitoses were rounder. The intensity-based features from chromatin channels were the most discriminative features between the easily identifiable mitoses and the miscounted objects. Conclusions: Quantitative features can be used to describe the characteristics of challenging mitoses and miscounted nonmitotic objects
    corecore