39 research outputs found

    Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection

    Get PDF
    The mismatch negativity (MMN), an event-related potential (ERP) representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a MMN in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge. We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory (SA) training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing

    Looking for a pattern: An MEG study on the abstract mismatch negativity in musicians and nonmusicians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mismatch negativity (MMN) is an early component of event-related potentials/fields, which can be observed in response to violations of regularities in sound sequences. The MMN can be elicited by simple feature (e.g. pitch) deviations in standard oddball paradigms as well as by violations of more complex sequential patterns. By means of magnetoencephalography (MEG) we investigated if a pattern MMN could be elicited based on global rather than local probabilities and if the underlying ability to integrate long sequences of tones is enhanced in musicians compared to nonmusicians.</p> <p>Results</p> <p>A pattern MMN was observed in response to violations of a predominant sequential pattern (AAAB) within a standard oddball tone sequence consisting of only two different tones. This pattern MMN was elicited even though the probability of pattern deviants in the sequence was as high as 0.5. Musicians showed more leftward-lateralized pattern MMN responses, which might be due to a stronger specialization of the ability to integrate information in a sequence of tones over a long time range.</p> <p>Conclusion</p> <p>The results indicate that auditory grouping and the probability distribution of possible patterns within a sequence influence the expectations about upcoming tones, and that the MMN might also be based on global statistical knowledge instead of a local memory trace. The results also show that auditory grouping based on sequential regularities can occur at a much slower presentation rate than previously presumed, and that probability distributions of possible patterns should be taken into account even for the construction of simple oddball sequences.</p

    Processing of Complex Auditory Patterns in Musicians and Nonmusicians

    Get PDF
    In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN) response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG) we recorded MMN responses to deviant tones that could occur at any position of standard tone patterns composed of four, six or eight tones during passive, distracted listening. Whereas there was a reliable MMN response to deviant tones in the four-tone pattern in both musicians and nonmusicians, only some individuals showed MMN responses to the longer patterns. This finding of a reliable capacity of the short-term auditory store underlying the MMN response is in line with estimates of a three to five item capacity of the short-term memory trace from behavioural studies, although pitch and contour complexity covaried with sequence length, which might have led to an understatement of the reported capacity. Whereas there was a tendency for an enhancement of the pattern MMN in musicians compared to nonmusicians, a strong advantage for musicians could be shown in an accompanying behavioural task of detecting the deviants while attending to the stimuli for all pattern lengths, indicating that long-term musical training differentially affects the memory capacity of auditory short-term memory for complex tone patterns with and without attention. Also, a left-hemispheric lateralization of MMN responses in the six-tone pattern suggests that additional networks that help structuring the patterns in the temporal domain might be recruited for demanding auditory processing in the pitch domain

    Not all errors are alike : modulation of error-related neural responses in musical joint action

    Get PDF
    During joint action, the sense of agency enables interaction partners to implement corrective and adaptive behaviour in response to performance errors. When agency becomes ambiguous (e.g. when action similarity encourages perceptual self– other overlap), confusion as to who produced what may disrupt this process. The current experiment investigated how ambiguity of agency affects behavioural and neural responses to errors in a joint action domain where self–other overlap is common: musical duos. Pairs of pianists performed piano pieces in synchrony, playing either the same pitches (ambiguous agency) or different pitches (unambiguous agency) while electroencephalography (EEG) was recorded for each individual. Behavioural and event-related potential results showed no effects of the agency manipulation but revealed differences in how distinct error types are processed. Self-produced ‘wrong note’ errors (substitutions) were left uncorrected, showed post-error slowing and elicited an error-related negativity (ERN) peaking before erroneous keystrokes (pre-ERN). In contrast, self-produced ‘extra note’ errors (additions) exhibited pre-error slowing, error and post-error speeding, were rapidly corrected and elicited the ERN. Other-produced errors evoked a feedback-related negativity but no behavioural effects. Overall findings shed light upon how the nervous system supports fluent interpersonal coordination in real-time joint action by employing distinct mechanisms to manage different types of errors

    Coastal Dynamics of Thua Thien Hue, Vietnam: Insights from 35 Years of Earth Observation Data

    Get PDF
    For the entire shoreline of Vietnam, a comprehensive analysis spanning from 1984 to 2021 was conducted. The study employed a cloud-based processing strategy on Google Earth Engine, utilizing Landsat-derived annual composites based on the Modified Normalized Difference Water Index (MNDWI). Coastline change rates were quantified using linear regressions along shore-normal transects, and hotspots were identified based on erosion and accretion rates. Notable erosion hotspots were observed in the Mekong Delta and Nam Dinh province, while accretion was prominent near Hai Phong city. The coastal region of Vietnam, including Thua Thien Hue province, is exceptionally susceptible to sea level rise, storm surges and changing sedimentation patterns due to urbanization, agriculture, aquaculture, tourism, and industrial activities competing for limited and attractive coastal zones. Thua Thien Hue, home to the largest lagoon in Southeast Asia, the Tam Giang-Cau Hai lagoon, emerged as a unique case emphasizing the significance of understanding and monitoring coastline dynamics. An extensive dune, stretching across approximately 70 km, acts as a natural barrier, separating the lagoon from the sea. This region encompasses a distinctive ecosystem, agricultural expanses, aquaculture ventures, and the culturally rich City of Hue, once the imperial capital boasting numerous heritage sites. The hinterland, sheltering this amalgamation of natural and cultural treasures, faces the recurrent challenge of compound flooding events. These events are intensified by the interplay of storm surges from the sea and associated backwater effects. Given this, comprehending the historical dynamics becomes imperative, serving as a cornerstone for informed decisions on future adaptation strategies in the realms of coastal and flood protection. More than half of Thua Thien Hue's coast was classified as predominantly stable, but localized erosion and accretion patterns revealed varying dynamics. The central finding was the identification of five local hotspots with strong coastline change rates. These hotspots exhibited dynamic patterns of erosion and accretion, notably at the Thuan An inlet and in Tu Hien in the south of Hue province. The Thuan An inlet showcased an erosion hotspot with an average erosion rate of -4 m/yr over 900 meters. This erosion intensified in the 2000s, stabilizing after 2014, illustrating the temporal variability of coastal dynamics. Conversely, on the opposite side of the lagoon inlet, a headland was identified as an accretion hotspot with an average rate of +3 m/yr and alternating phases of erosion and accretion. Severe erosion hotspots were also noted north and south of the lagoon inlet in Tu Hien. Thua Thien Hue's coastline changes are multifaceted but understudied. They are probably influenced by sediment redistribution, reduced coastal sediment availability, and direct human interventions. Despite the overall stability of most parts of the coastline, the localized changes underscore the intricate interplay of natural and anthropogenic factors shaping the coastal dynamics of Thua Thien Hue over the past three and a half decades

    The effect of hexose ratios on metabolite production in Saccharomyces cerevisiae strains obtained from the spontaneous fermentation of mezcal

    Get PDF
    Mezcal from Tamaulipas (Me´xico) is produced by spontaneous alcoholic fermentation using Agave spp. musts, which are rich in fructose. In this study eight Saccharomyces cerevisiae isolates obtained at the final stage of fermentation from a traditional mezcal winery were analysed in three semisynthetic media. Medium M1 had a sugar content of 100 g l-1 and a glucose/fructose (G/F) of 9:1. Medium M2 had a sugar content of 100 g l-1 and a G/F of 1:9. Medium M3 had a sugar content of 200 g l-1 and a G/F of 1:1. In the three types of media tested, the highest ethanol yield was obtained from the glucophilic strain LCBG-3Y5, while strain LCBG-3Y8 was highly resistant to ethanol and the most fructophilic of the mezcal strains. Strain LCBG-3Y5 produced more glycerol (4.4 g l-1) and acetic acid (1 g l-1) in M2 than in M1 (1.7 and 0.5 g l-1, respectively), and the ethanol yields were higher for all strains in M1 except for LCBG-3Y5, -3Y8 and the Fermichamp strain. In medium M3, only the Fermichamp strain was able to fully consume the 100 g of fructose l-1 but left a residual 32 g of glucose l-1. Regarding the hexose transporters, a high number of amino acid polymorphisms were found in the Hxt1p sequences. Strain LCBG-3Y8 exhibited eight unique amino acid changes, followed by the Fermichamp strain with three changes. In Hxt3p, we observed nine amino acid polymorphisms unique for the Fermichamp strain and five unique changes for the mezcal strains

    Cortical Plasticity Induced by Short-Term Multimodal Musical Rhythm Training

    Get PDF
    Performing music is a multimodal experience involving the visual, auditory, and somatosensory modalities as well as the motor system. Therefore, musical training is an excellent model to study multimodal brain plasticity. Indeed, we have previously shown that short-term piano practice increase the magnetoencephalographic (MEG) response to melodic material in novice players. Here we investigate the impact of piano training using a rhythmic-focused exercise on responses to rhythmic musical material. Musical training with non musicians was conducted over a period of two weeks. One group (sensorimotor-auditory, SA) learned to play a piano sequence with a distinct musical rhythm, another group (auditory, A) listened to, and evaluated the rhythmic accuracy of the performances of the SA-group. Training-induced cortical plasticity was evaluated using MEG, comparing the mismatch negativity (MMN) in response to occasional rhythmic deviants in a repeating rhythm pattern before and after training. The SA-group showed a significantly greater enlargement of MMN and P2 to deviants after training compared to the A- group. The training-induced increase of the rhythm MMN was bilaterally expressed in contrast to our previous finding where the MMN for deviants in the pitch domain showed a larger right than left increase. The results indicate that when auditory experience is strictly controlled during training, involvement of the sensorimotor system and perhaps increased attentional recources that are needed in producing rhythms lead to more robust plastic changes in the auditory cortex compared to when rhythms are simply attended to in the auditory domain in the absence of motor production

    The influence of pitch feedback on learning of motor -timing and sequencing: A piano study with novices.

    No full text
    Audio-motor coordination is a fundamental requirement in the learning and execution of sequential actions such as music performance. Predictive motor control mechanisms determine the sequential content and timing of upcoming tones and thereby facilitate accurate performance. To study the role of auditory-motor predictions at early stages of acquiring piano performance skills, we conducted an experiment in which non-musicians learned to play a musical sequence on the piano in synchrony with a metronome. Three experimental conditions compared errors and timing. The first consisted of normal auditory feedback using conventional piano key-to-tone mappings. The second employed fixed-pitch auditory feedback consisting of a single tone that was given with each key stroke. In the third condition, for each key stroke a tone was randomly drawn from the set of tones associated with the normal sequence. The results showed that when auditory feedback tones were randomly assigned, participants produced more sequencing errors (i.e., a higher percentage of incorrect key strokes) compared to when auditory feedback was normal or consisted of a single tone of fixed pitch. Furthermore, synchronization with the metronome was most accurate in the fixed-pitch single-tone condition. These findings suggest that predictive motor control mechanisms support sequencing and timing, and that these sensorimotor processes are dissociable even at early stages of acquiring complex motor skills such as music performance

    THE INFLUENCE OF PITCH FEEDBACK ON LEARNING OF MOTOR-TIMING AND SEQUENCING: A PIANO STUDY WITH NOVICES

    No full text
    These files contain values and conditions for each subject in csv format

    A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity.

    Get PDF
    To localize the neural generators of the musically elicited mismatch negativity with high temporal resolution we conducted a beamformer analysis (Synthetic Aperture Magnetometry, SAM) on magnetoencephalography (MEG) data from a previous musical mismatch study. The stimuli consisted of a six-tone melodic sequence comprising broken chords in C- and G-major. The musical sequence was presented within an oddball paradigm in which the last tone was lowered occasionally (20%) by a minor third. The beamforming analysis revealed significant right hemispheric neural activation in the superior temporal (STC), inferior frontal (IFC), superior frontal (SFC) and orbitofrontal (OFC) cortices within a time window of 100-200 ms after the occurrence of a deviant tone. IFC and SFC activation was also observed in the left hemisphere. The pronounced early right inferior frontal activation of the auditory mismatch negativity has not been shown in MEG studies so far. The activation in STC and IFC is consistent with earlier electroencephalography (EEG), optical imaging and functional magnetic resonance imaging (fMRI) studies that reveal the auditory and inferior frontal cortices as main generators of the auditory MMN. The observed right hemispheric IFC is also in line with some previous music studies showing similar activation patterns after harmonic syntactic violations. The results demonstrate that a deviant tone within a musical sequence recruits immediately a distributed neural network in frontal and prefrontal areas suggesting that top-down processes are involved when expectation violation occurs within well-known stimuli
    corecore