6 research outputs found

    Improvement of environmental quality in intensive pig farming through an integrated bioactivation program for the control and prevention of swine mycoplasmal pneumonia

    Get PDF
    The decline of pig health status is the effect of a bad air quality inside breeding facilities related to the concentration of biogases derived from the action of faecal microbial flora on urine nitrogen. Bioactivation of the environment with bacterialenzymatic mixtures is able to reduce this chemical emanation. An experimental trial has been performed to evaluate the efficacy of the bioactivation treatment to prevent mycoplasmal pneumonia in finishing pigs. Treated and untreated groups, different treatment schemes and different floors have been compared. The ammonia concentration was checked by a chemical method. M. hyopneumoniae infection was evaluated through seroprevalence and by a quantitative lung-scoring system. For all slaughter-lots average carcass weight was recorded. The decrease of the environmental ammonia concentration resulted in lower lungscores and higher carcass weight

    Effects of disinfectant fogging procedure on dust, ammonia concentration, aerobic bacteria and fungal spores in a farrowing-weaning room

    Get PDF
    Introduction and Objective. In the last decades, large-scale swine production has led to intensive rearing systems in which air quality can be easily degraded by aerial contaminants that can pose a health risk to the pigs and farm workers. This study evaluated the effects of fogging disinfectant procedure on productive performance, ammonia and dust concentration, aerobic bacteria and fungal spores spreading in the farrowing–weaning room. Materials and Method. This trial was conducted in 2 identical farrowing-weaning rooms of a piggery. In both rooms, 30 pregnant sows were lodged in individual cages. At 75 days of age, the piglets were moved to the fattening room. In the treated room, with the birth of the first suckling-pig, the fogging disinfection with diluted Virkon S was applied once a day in the experimental room per 15 minutes at 11:00. The fogging disinfectant treatment was switched between rooms at the end of the first trial period. Temperature, relative humidity, dust (TSP-RF fractions and number of particles), ammonia concentration and aerial contaminants (enterococci, Micrococcaeae and fungal spores) were monitored in both rooms. Results. Ammonia concentration reduction induced by fogging disinfection was estimated 18%, total suspended particles and the respirable fraction were significantly lower in the experimental room. Fungal spores resulted in a significant reduction by the fogging procedure, together with dust respirable fraction and fine particulate matter abatement. Conclusions. The fogging disinfection procedure improved air quality in the piggery, thereby enhancing workers and animals health
    corecore