45 research outputs found

    Lysophosphatidylcholine Drives Neuroblast Cell Fate

    Get PDF
    Neuronal differentiation plays a key role during embryogenesis. However, based on the capacity of neuronal stem cells to either generate or regenerate neurons and because differentiation stops aberrant neuroblasts proliferation, neuronal differentiation is crucial during neuropathological conditions. Although phosphatidylcholine (PtdCho) has been proposed as an important molecule for neurite growth and neuronal regeneration, the identity of the molecular target has remained elusive. This study originally describes that lysophosphatidylcholine (LPtdCho), either exogenously supplied or generated by the imbalance of PtdCho metabolism through the enzymatic action of cytosolic phospholipase A2, acts as a neurotrophic-like factor. We demonstrated that LPtdCho induces neuronal differentiation by activation of the small G protein Ras followed by the Raf/MEK/ERK signaling pathway. Accordingly, LPtdCho redirects neuroblasts gene expression leading to the generation of functional mature neurons expressing ÎČIII-tubulin and having increased acetylcholinesterase activity and membrane biosynthesis required for neuritogenesis. These findings provide mechanistic details of the role of cytidine-5-diphosphocholine (CDP-choline) and PtdCho as neuroprotectors. Furthermore, as LPtdCho recapitulates the effect of the therapeutic agent retinoic acid, these results open new avenues for drug discovery for the treatment of neuropathological conditions.Fil: Paoletti, Luciana Elisa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Domizi, Pablo Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Marcucci, Hebe Josefina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Montaner, Aneley Natalia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Krapf, Dario. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Salvador, Gabriela Alejandra. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; ArgentinaFil: Banchio, Claudia Elena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; Argentin

    Induction of hepatic multidrug resistance-associated protein 3 by ethynylestradiol is independent of cholestasis and mediated by estrogen receptor

    Get PDF
    Multidrug resistance–associated protein 3 (Mrp3; Abcc3) expression and activity are up-regulated in rat liver after in vivo repeated administration of ethynylestradiol (EE), a cholestatic synthetic estrogen, whereas multidrug resistance-associated protein 2 (Mrp2) is down-regulated. This study was undertaken to determine whether Mrp3 induction results from a direct effect of EE, independent of accumulation of any endogenous common Mrp2/Mrp3 substrates resulting from cholestasis and the potential mediation of estrogen receptor (ER). In in vivo studies, male rats were given a single, noncholestatic dose of EE (5 mg/kg s.c.), and basal bile flow and the biliary excretion rate of bile salts and glutathione were measured 5 hours later. This treatment increased Mrp3 mRNA by 4-fold, detected by real-time polymerase chain reaction, despite the absence of cholestasis. Primary culture of rat hepatocytes incubated with EE (1–10 ”M) for 5 hours exhibited a 3-fold increase in Mrp3 mRNA (10 ”M), consistent with in vivo findings. The increase in Mrp3 mRNA by EE was prevented by actinomycin D, indicating transcriptional regulation. When hepatocytes were incubated with an ER antagonist [7α,17ÎČ-[9-[(4,4,5,5,5-Pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI182/780), 1 ”M], in addition to EE, induction of Mrp3 mRNA was abolished, implicating ER as a key mediator. EE induced an increase in ER-α phosphorylation at 30 minutes and expression of c-Jun, a well-known ER target gene, at 60 minutes, as detected by Western blotting of nuclear extracts. These increases were prevented by ICI182/780. In summary, EE increased the expression of hepatic Mrp3 transcriptionally and independently of any cholestatic manifestation and required participation of an ER, most likely ER-α, through its phosphorylation.Fil: Ruiz, Maria Laura. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); ArgentinaFil: Rigalli, Juan Pablo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); ArgentinaFil: Arias, Agostina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); ArgentinaFil: Villanueva, Silvina Stella Maris. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); ArgentinaFil: Banchio, Claudia Elena. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas; ArgentinaFil: Vore, Mary. University Of Kentucky; Estados UnidosFil: Mottino, Aldo Domingo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); ArgentinaFil: Catania, Viviana Alicia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); Argentin

    2-Mercaptomethyl-thiazolidines use conserved aromatic-S interactions to achieve broad-range inhibition of metallo-ÎČ-lactamases

    Get PDF
    Infections caused by multidrug resistant (MDR) bacteria are a major public health threat. Carbapenems are among the most potent antimicrobial agents that are commercially available to treat MDR bacteria. Bacterial production of carbapenem-hydrolysing metallo-b-lactamases (MBLs) challenges their safety and efficacy, with subclass B1 MBLs hydrolysing almost all b-lactam antibiotics. MBL inhibitors would fulfil an urgent clinical need by prolonging the lifetime of these life-saving drugs. Here we report the synthesis and activity of a series of 2-mercaptomethyl-thiazolidines (MMTZs), designed to replicate MBL interactions with reaction intermediates or hydrolysis products. MMTZs are potent competitive inhibitors of B1 MBLs in vitro (e.g., Ki ÂŒ 0.44 mM vs. NDM-1). Crystal structures of MMTZ complexes reveal similar binding patterns to the most clinically important B1 MBLs (NDM-1, VIM-2 and IMP-1), contrasting with previously studied thiol-based MBL inhibitors, such as bisthiazolidines (BTZs) or captopril stereoisomers, which exhibit lower, more variable potencies and multiple binding modes. MMTZ binding involves thiol coordination to the Zn(II) site and extensive hydrophobic interactions, burying the inhibitor more deeply within the active site than D/L-captopril. Unexpectedly, MMTZ binding features a thioether–p interaction with a conserved active-site aromatic residue, consistent with their equipotent inhibition and similar binding to multiple MBLs. MMTZs penetrate multiple Enterobacterales, inhibit NDM-1 in situ, and restore carbapenem potency against clinical isolates expressing B1 MBLs. Based on their inhibitory profile and lack of eukaryotic cell toxicity, MMTZs represent a promising scaffold for MBL inhibitor development. These results also suggest sulphur–p interactions can be exploited for general ligand design in medicinal chemistry

    Rational design of benzobisheterocycle metallo-ÎČ-lactamase inhibitors:a tricyclic scaffold enhances potency against target enzymes

    Get PDF
    Antimicrobial resistance is a global public health threat. Metallo-ÎČ-lactamases (MBLs) inactivate ÎČ-lactam antibiotics, including carbapenems, are disseminating among Gram-negative bacteria, and lack clinically useful inhibitors. The evolving bisthiazolidine (BTZ) scaffold inhibits all three MBL subclasses (B1 - B3). We report design, synthesis and evaluation of BTZ analogs. Structure-activity relationships identified the BTZ thiol as essential, while the carboxylate is replaceable, with its removal enhancing potency by facilitating hydrophobic interactions within the MBL active site. While the introduction of a flexible aromatic ring is neutral or detrimental for inhibition, a rigid (fused) ring generated nM benzobisheterocycle (BBH) inhibitors that potentiated carbapenems against MBL-producing strains. Crystallography of BBH:MBL complexes identified hydrophobic interactions as the basis of potency towards B1 MBLs. These data underscore BTZs as versatile, potent broad spectrum MBL inhibitors (with activity extending to enzymes refractory to other inhibitors), and provide a rational approach to further improve the tricyclic BBH scaffold

    Estrogen receptor- mediates human multidrug resistance associated protein 3 induction by 17-ethynylestradiol. Role of activator protein-1

    Get PDF
    Previously, we have demonstrated that 17α-ethynylestradiol (EE) induces rat multidrug-resistance associated protein 3 (Mrp3, Abcc3) expression transcriptionally through estrogen receptor-α (ER-α) activation. We explored the effect of EE on MRP3 expression of human origin. HepG2 cells were transfected with ER-α and incubated with EE (1–10–50 ÎŒM) for 48 h. MRP3 protein and mRNA levels were measured by Western blotting and Real time PCR, respectively. EE up-regulated MRP3 protein and mRNA at 50 ÎŒM only in ER-α(+)-HepG2 cells. The in silico analysis of mrp3 promoter region demonstrated absence of estrogen response elements, but showed several Ap-1 binding sites. We further evaluated the potential involvement of the transcription factors c-JUN and c-FOS (members of Ap-1) in MRP3 up-regulation. ER-α(+) HepG2 cells were incubated with EE and c-FOS and c-JUN levels measured by Western blotting in nuclear extracts. EE up-regulated only c-JUN. Experiments of overexpression and knock-down of c-JUN by siRNA further demonstrated that this transcription factor is indeed implicated in MRP3 upregulation by EE. Co-immunoprecipitation assay demonstrated that EE induces c-JUN/ER-α interaction, and chromatin immunoprecipitation assay showed that this complex is recruited to the AP-1 binding consensus element present at the position (−1300/−1078 bp) of human mrp3 promoter. We conclude that EE induces MRP3 expression through ER-α, with recruitment of ER-α in complex with c-JUN to the human mrp3 promoter.Fil: Ruiz, Maria Laura. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); ArgentinaFil: Rigalli, Juan Pablo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); ArgentinaFil: Arias, Agostina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); ArgentinaFil: Villanueva, Silvina Stella Maris. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); ArgentinaFil: Banchio, Claudia Elena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Vore, Mary. University Of Kentucky; Estados UnidosFil: Mottino, Aldo Domingo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); ArgentinaFil: Catania, Viviana Alicia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FisiologĂ­a Experimental (i); Argentin

    Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate

    Get PDF
    During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55Gag is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4+ T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55Gag membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55Gag with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication.Fil: Pereyra Gerber, Federico PehuĂ©n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones BiomĂ©dicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones BiomĂ©dicas en Retrovirus y Sida; ArgentinaFil: Cabrini, Mercedes. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones BiomĂ©dicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones BiomĂ©dicas en Retrovirus y Sida; ArgentinaFil: Jancic, Carolina Cristina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Paoletti, Luciana Elisa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Banchio, Claudia Elena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de BiologĂ­a Molecular y Celular de Rosario; ArgentinaFil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂ­sica de Buenos Aires; ArgentinaFil: Sigaut, Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de MicroscopĂ­as Avanzadas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Pietrasanta, Lia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de MicroscopĂ­as Avanzadas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Duette, Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones BiomĂ©dicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones BiomĂ©dicas en Retrovirus y Sida; ArgentinaFil: Freed, Eric O.. National Cancer Institute at Frederick; Estados UnidosFil: Basile, Genevieve de Saint. Institut National de la SantĂ© et de la Recherche MĂ©dicale; FranciaFil: Moita, Catarina Ferreira. Instituto Gulbenkian de Ciencia; PortugalFil: Moita, Luis Ferreira. Instituto Gulbenkian de Ciencia; PortugalFil: Amigorena, Sebastian. Institute Curie; FranciaFil: Benaroch, Philippe. Institute Curie; FranciaFil: Geffner, Jorge RaĂșl. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones BiomĂ©dicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones BiomĂ©dicas en Retrovirus y Sida; ArgentinaFil: Ostrowski, Matias. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones BiomĂ©dicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones BiomĂ©dicas en Retrovirus y Sida; Argentin

    TAT-mediated transduction of bacterial redox proteins generates a cytoprotective effect on neuronal cells

    Get PDF
    Cell penetrating peptides, also known as protein transduction domains, have the capacity to ubiquitously cross cellular membranes carrying many different cargos with negligible cytotoxicity. As a result, they have emerged as a powerful tool for macromolecular deliverybased therapies. In this study, catalytically active bacterial Ferredoxin-NADP+ reductase (LepFNR) and Heme oxygenase (LepHO) fused to the HIV TAT-derived protein transduction peptide (TAT) were efficiently transduced to neuroblastoma SHSY-5Y cells. Proteins entered the cells through an endocytic pathway showing a time/concentration dependent mechanism that was clearly modulated by the nature of the cargo protein. Since ferredoxinNADP+ reductases and heme oxygenases have been implicated in mechanisms of oxidative stress defense, neuroblastoma cells simultaneously transduced with TAT-LepFNR and TAT-LepHO were challenged by H2O2 incubations to judge the cytoprotective power of these bacterial enzymes. Accumulation of reactive oxygen species was significantly reduced in these transduced neuronal cells. Moreover, measurements of metabolic viability, membrane integrity, and cell survival indicated that these cells showed a better tolerance to oxidative stress. Our results open the possibility for the application of transducible active redox proteins to overcome the damage elicited by oxidative stress in cells and tissues.Para citar este articulo: Balaban CL, Banchio C, Ceccarelli EA (2017) TAT-mediated transduction of bacterial redox proteins generates a cytoprotective effect on neuronal cells. PLoS ONE 12(9): e0184617. https:// doi.org/10.1371/journal.pone.0184617Fil: Balaban, Cecilia Lucía. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Banchio, Claudia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Ceccarelli, Eduardo A. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET); Argentina

    Phosphatidylcholine restores neuronal plasticity of neural stem cells under inflammatory stress

    Get PDF
    The balances between NSCs growth and differentiation, and between glial and neuronal differentiation play a key role in brain regeneration after any pathological conditions. It is well known that the nervous tissue shows a poor recovery after injury due to the factors present in the wounded microenvironment, particularly inflammatory factors, that prevent neuronal differentiation. Thus, it is essential to generate a favourable condition for NSCs and conduct them to differentiate towards functional neurons. Here, we show that neuroinflammation has no effect on NSCs proliferation but induces an aberrant neuronal differentiation that gives rise to dystrophic, non-functional neurons. This is perhaps the initial step of brain failure associated to many neurological disorders. Interestingly, we demonstrate that phosphatidylcholine (PtdCho)-enriched media enhances neuronal differentiation even under inflammatory stress by modifying the commitment of post-mitotic cells. The proneurogenic effect of PtdCho increases the population of healthy normal neurons. In addition, we provide evidences that this phospholipid ameliorates the damage of neurons and, in consequence, modulates neuronal plasticity. These results contribute to our understanding of NSCs behaviour under inflammatory conditions, opening up new venues to improve neurogenic capacity in the brain.Fil: Magaquian, Dario. Universidad de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Ciencias Biológicas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Delgado Ocaña, Susana. Universidad de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Ciencias Biológicas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Perez, Consuelo. Universidad de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Ciencias Biológicas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Banchio, Claudia. Universidad de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Ciencias Biológicas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina

    KDM2B regulates choline kinase expression and neuronal differentiation of neuroblastoma cells

    Get PDF
    The process of neuronal differentiation is associated with neurite elongation and membrane biogenesis, and phosphatidylcholine (PtdCho) is the major membrane phospholipid in mammalian cells. During neuroblast differentiation, the transcription of two genes involved in PtdCho biosynthesis are stimulated: Chka gene for choline kinase (CK) alpha isoform and Pcyt1a gene for CTP:phosphocholine cytidylyltransferase (CCT) alpha isoform. Here we show that CKα is essential for neuronal differentiation. In addition, we demonstrated that KDM2B regulates CKα expression and, as a consequence, neuronal differentiation. This factor is up-regulated in the course of the neuroblasts proliferative and undifferentiated state and down-regulated during differentiation induced by retinoic acid (RA). During proliferation, KDM2B binds to the Box2 located in the Chka promoter repressing its transcription. Interestingly, KDM2B knockdown enhances the levels of CKα expression in neuroblast cells and induces neuronal differentiation even in the absence of RA. These results suggest that KDM2B is required for the appropriate regulation of CKα during neuronal differentiation and to the maintaining of the undifferentiated stage of neuroblast cells.Para citar este articulo: Domizi P, Malizia F, Chazarreta-Cifre L, Diacovich L, Banchio C (2019) KDM2B regulates choline kinase expression and neuronal differentiation of neuroblastoma cells. PLoS ONE 14(1): e0210207. https://doi.org/10.1371/journal. pone.0210207Fil: Domizi, Pablo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Malizia, Florencia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Chazarreta-Cifre, Lorena. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Diacovich, Lautaro. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET); Argentina.Fil: Banchio, Claudia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR -CONICET); Argentina

    Choline Kinase alpha Expression during RA-induced Neuronal Differentiation: role of C/EBPÎČ

    No full text
    Neuronal differentiation is a complex process characterized by a halt in proliferation and extension of neurites from the cell body. This process is accompanied by changes in gene expression that mediate the redirection leading to neurite formation and function. Acceleration of membrane phospholipids synthesis is associated with neurite elongation, and phosphatidylcholine (PtdCho) is the major membrane phospholipid in mammalian cells. The transcription of two genes in particular encoding key enzymes in the CDP–choline pathway for PtdCho biosynthesis are stimulated; the Chka gene for choline kinase (CK) alpha isoform and the Pcyt1a gene for the CTP: phosphocholine cytidylyltransferase (CCT) alpha isoform. We report that the stimulation of CKα expression during retinoic acid (RA) induced differentiation depends on a promoter region that contains two CCAAT/Enhancerbinding Protein-ÎČ (C/EBPÎČ) sites. We demonstrate that during neuronal differentiation of Neuro-2a cells, RA induces Chka expression by a mechanism that involves ERKÂœ activation which triggers C/EBPÎČ expression. Elevated levels of C/EBPÎČ bind to the Chka proximal promoter (Box1) inducing CKα expression. In addition we identified a downstream sequence named Box2 which together with Box1 is required for the promoter to reach the full induction. This is the first elucidation of the mechanism by which the expression of Chka is coordinately regulated during neuronal differentiation.Fil: Domizi, Pablo Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Aoyama, Chieko. Dokkyo Medical University School of Medicine. Department of Biochemistry; JapĂłnFil: Banchio, Claudia Elena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de BiologĂ­a Molecular y Celular de Rosario; Argentina. Universidad Nacional de Rosario; Argentin
    corecore