18 research outputs found

    Biallelic loss of LDB3 leads to a lethal pediatric dilated cardiomyopathy

    Get PDF
    Autosomal dominant variants in LDB3 (also known as ZASP), encoding the PDZ-LIM domain-binding factor, have been linked to a late onset phenotype of cardiomyopathy and myofibrillar myopathy in humans. However, despite knockout mice displaying a much more severe phenotype with premature death, bi-allelic variants in LDB3 have not yet been reported. Here we identify biallelic loss-of-function variants in five unrelated cardiomyopathy families by next-generation sequencing. In the first family, we identified compound heterozygous LOF variants in LDB3 in a fetus with bilateral talipes and mild left cardiac ventricular enlargement. Ultra-structural examination revealed highly irregular Z-disc formation, and RNA analysis demonstrated little/no expression of LDB3 protein with a functional C-terminal LIM domain in muscle tissue from the affected fetus. In a second family, a homozygous LDB3 nonsense variant was identified in a young girl with severe early-onset dilated cardiomyopathy with left ventricular non-compaction; the same homozygous nonsense variant was identified in a third unrelated female infant with dilated cardiomyopathy. We further identified homozygous LDB3 frameshift variants in two unrelated probands diagnosed with cardiomegaly and severely reduced left ventricular ejection fraction. Our findings demonstrate that recessive LDB3 variants can lead to an early-onset severe human phenotype of cardiomyopathy and myopathy, reminiscent of the knockout mouse phenotype, and supporting a loss of function mechanism

    Biallelic ADAM22 pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy

    Get PDF
    Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harboring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20), delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: defective cell membrane expression (1), impaired LGI1-binding (2), and/or impaired interaction with the postsynaptic density protein PSD-95 (3). We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics

    Further delineation of the phenotype of chromosome 14q13 deletions: (positional) involvement of FOXG1 appears the main determinant of phenotype severity, with no evidence for a holoprosencephaly locus

    No full text
    BackgroundDeletions including chromosome 14 band q13 have been linked to variable phenotypes. With current molecular methods the authors aim to elucidate a genotype-phenotype correlation by accurately determining the size and location of the deletions and the associated phenotype.MethodsHere the authors report the molecular karyotyping and phenotypic description of seven patients with overlapping deletions including chromosome 14q13.ResultsThe authors show that deletions including 14q13 result in a recognisable phenotype mainly due to haploinsufficiency of two genes (NKX2-1, PAX9). FOXG1 (on chromosome band 14q12) involvement seems to be the main determinant of phenotype severity. The patients in this study without FOXG1 involvement and deletions of up to 10 Mb have a relatively mild phenotype. The authors cannot explain why some patients in literature with overlapping but smaller deletions appear to have a more severe phenotype. A previously presumed association with holoprosencephaly could not be confirmed as none of the patients in this series had holoprosencephaly.ConclusionsFOXG1 appears the main determinant of the severity of phenotypes resulting from deletions including 14q13. The collected data show no evidence for a locus for holoprosencephaly in the 14q13 region, but a locus for agenesis of the corpus callosum cannot be excluded.status: publishe

    Parental insertional balanced translocations are an important cause of apparently de novo CNVs in patients with developmental anomalies

    No full text
    n several laboratories, genome-wide array analysis has been implemented as the first tier diagnostic test for the identification of copy number changes in patients with mental retardation and/or congenital anomalies. The identification of a pathogenic copy number variant (CNV) is not only important to make a proper diagnosis but also to enable the accurate estimation of the recurrence risk to family members. Upon the identification of a de novo interstitial loss or gain, the risk recurrence is considered very low. However, this risk is 50% if one of the parents is carrier of a balanced insertional translocation (IT). The apparently de novo imbalance in a patient is then the consequence of the unbalanced transmission of a derivative chromosome involved in an IT. To determine the frequency with which insertional balanced translocations would be the origin of submicroscopic imbalances, we investigated the potential presence of an IT in a consecutive series of 477 interstitial CNVs, in which the parental origin has been tested by FISH, among 14?293 patients with developmental abnormalities referred for array. We demonstrate that ITs underlie ~2.1% of the apparently de novo, interstitial CNVs, indicating that submicroscopic ITs are at least sixfold more frequent than cytogenetically visible ITs. This risk estimate should be taken into account during counseling, and warrant parental and proband FISH testing wherever possible in patients with an apparently de novo, interstitial aberration.<br/

    Prognostic parameters in uveal melanoma and their association with BAP1 expression

    No full text
    AIM: To determine whether BAP1 gene and protein expression associates with different prognostic parameters in uveal melanoma and whether BAP1 expression correctly identifies patients as being at risk for metastases, following enucleation of the primary tumour. METHODS: Thirty cases of uveal melanoma obtained by enucleation between 1999 and 2004 were analysed for a variety of prognostic markers, including histological characteristics, chromosome aberrations obtained by fluorescence in situ hybridisation (FISH) and single nucleotide polymorphism (SNP) analysis and gene expression profiling. These parameters were compared with BAP1 gene expression and BAP1 immunostaining. RESULTS: The presence of monosomy of chromosome 3 as identified by the different chromosome 3 tests showed significantly increased HRs (FISH on isolated nuclei cut-off 30%: HR 11.6, p=0.002; SNP analysis: HR 20.3, p=0.004) for death due to metastasis. The gene expression profile class 2, based on the 15-gene expression profile, similarly provided a significantly increased HR for a poor outcome (HR 8.5, p=0.005). Lower BAP1 gene expression and negative BAP1 immunostaining (50% of 28 tumours were immunonegative) were both associated with these markers for prognostication: FISH cut-off 30% monosomy 3 (BAP1 gene expression: p=0.037; BAP1 immunostaining: p=0.001), SNP-monosomy 3 (BAP1 gene expression: p=0.008; BAP1 immunostaining: p=0.002) and class 2 profile (BAP1 gene expression: p<0.001; BAP1 immunostaining: p=0.001) and were themselves associated with an increased risk of death due to metastasis (BAP1 gene expression dichotomised: HR 8.7, p=0.006; BAP1 immunostaining: HR 4.0, p=0.010). CONCLUSIONS: Loss of BAP1 expression associated well with all of the methods currently used for prognostication and was itself predictive of death due to metastasis in uveal melanoma after enucleation, thereby emphasising the importance of further research on the role of BAP1 in uveal melanoma

    The clinical spectrum of complete FBN1 allele deletions

    No full text
    The most common mutations found in FBN1 are missense mutations (56%), mainly substituting or creating a cysteine in a cbEGF domain. Other mutations are frameshift, splice and nonsense mutations. There are only a few reports of patients with marfanoid features and a molecularly proven complete deletion of a FBN1 allele. We describe the clinical features of 10 patients with a complete FBN1 gene deletion. Seven patients fulfilled the Ghent criteria for Marfan syndrome (MFS). The other three patients were examined at a young age and did not (yet) present the full clinical picture of MFS yet. Ectopia lentis was present in at least two patients. Aortic root dilatation was present in 6 of the 10 patients. In three patients, the aortic root diameter was on the 95th percentile and in one patient, the diameter of the aortic root was normal, the cross-section, however, had a cloverleaf appearance. Two patients underwent aortic root surgery at a relatively young age (27 and 34 years). Mitral valve prolapse was present in 4 of the 10 patients, and billowing of the mitral valve in 1. All patients had facial and skeletal features of MFS. Two patients with a large deletion extending beyond the FBN1 gene had an extended phenotype. We conclude that complete loss of one FBN1 allele does not predict a mild phenotype, and these findings support the hypothesis that true haploinsufficiency can lead to the classical phenotype of Marfan syndrome

    KAT6A Syndrome:genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants

    No full text
    Purpose Pathogenic variants in KAT6A have recently been identified as a cause of syndromic developmental delay. Within 2 years, the number of patients identified with pathogenic KAT6A variants has rapidly expanded and the full extent and variability of the clinical phenotype has not been reported. Methods We obtained data for patients with KAT6A pathogenic variants through three sources: treating clinicians, an online family survey distributed through social media, and a literature review. Results We identified 52 unreported cases, bringing the total number of published cases to 76. Our results expand the genotypic spectrum of pathogenic variants to include missense and splicing mutations. We functionally validated a pathogenic splice-site variant and identified a likely hotspot location for de novo missense variants. The majority of clinical features in KAT6A syndrome have highly variable penetrance. For core features such as intellectual disability, speech delay, microcephaly, cardiac anomalies, and gastrointestinal complications, genotype– phenotype correlations show that late-truncating pathogenic variants (exons 16–17) are significantly more prevalent. We highlight novel associations, including an increased risk of gastrointestinal obstruction. Conclusion Our data expand the genotypic and phenotypic spectrum for individuals with genetic pathogenic variants in KAT6A and we outline appropriate clinical management

    Copy number variants in patients with short stature

    Get PDF
    Height is a highly heritable and classic polygenic trait. Recent genome-wide association studies (GWAS) have revealed that at least 180 genetic variants influence adult height. However, these variants explain only about 10% of the phenotypic variation in height. Genetic analysis of short individuals can lead to the discovery of novel rare gene defects with a large effect on growth. In an effort to identify novel genes associated with short stature, genome-wide analysis for copy number variants (CNVs), using single-nucleotide polymorphism arrays, in 162 patients (149 families) with short stature was performed. Segregation analysis was performed if possible, and genes in CNVs were compared with information from GWAS, gene expression in rodents' growth plates and published information. CNVs were detected in 40 families. In six families, a known cause of short stature was found (SHOX deletion or duplication, IGF1R deletion), in two combined with a de novo potentially pathogenic CNV. Thirty-three families had one or more potentially pathogenic CNVs (n=40). In 24 of these families, segregation analysis could be performed, identifying three de novo CNVs and nine CNVs segregating with short stature. Four were located near loci associated with height in GWAS (ADAMTS17, TULP4, PRKG2/BMP3 and PAPPA). Besides six CNVs known to be causative for short stature, 40 CNVs with possible pathogenicity were identified. Segregation studies and bioinformatics analysis suggested various potential candidate genes
    corecore