35 research outputs found

    Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    Get PDF
    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system

    Enhancement of Dopaminergic Differentiation in Proliferating Midbrain Neuroblasts by Sonic Hedgehog and Ascorbic Acid

    Get PDF
    We analyzed the molecular mechanisms involved in the acquisition and maturation of dopaminergic (DA) neurons generated in vitro from rat ventral mesencephalon (MES) cells in the presence of mitogens or specific signaling molecules. The addition of basic fibroblast growth factor (bFGF) to MES cells in serum-free medium stimulates the proliferation of neuroblasts but delays DA differentiation. Recombinant Sonic hedgehog (SHH) protein increases up to three fold the number of tyrosine hydroxylase (TH)-positive cells and their differentiation, an effect abolished by anti-SHH antibodies. The expanded cultures are rich in nestin-positive neurons, glial cells are rare, all TH+ neurons are DA, and all DA and GABAergic markers analyzed are expressed. Adding ascorbic acid to bFGF/SHH-treated cultures resulted in a further five- to seven-fold enhancement of viable DA neurons. This experimental system also provides a powerful tool to generate DA neurons from single embryos. Our strategy provides an enriched source of MES DA neurons that are useful for analyzing molecular mechanisms controlling their function and for experimental regenerative approaches in DA dysfunction

    Electric Field Bridging-Effect in Electrified Microfibrils’ Scaffolds

    Get PDF
    Introduction: The use of biocompatible scaffolds combined with the implantation of neural stem cells, is increasingly being investigated to promote the regeneration of damaged neural tissue, for instance, after a Spinal Cord Injury (SCI). In particular, aligned Polylactic Acid (PLA) microfibrils’ scaffolds are capable of supporting cells, promoting their survival and guiding their differentiation in neural lineage to repair the lesion. Despite its biocompatible nature, PLA is an electrically insulating material and thus it could be detrimental for increasingly common scaffolds’ electric functionalization, aimed at accelerating the cellular processes. In this context, the European RISEUP project aims to combine high intense microseconds pulses and DC stimulation with neurogenesis, supported by a PLA microfibrils’ scaffold. Methods: In this paper a numerical study on the effect of microfibrils’ scaffolds on the E-field distribution, in planar interdigitated electrodes, is presented. Realistic microfibrils’ 3D CAD models have been built to carry out a numerical dosimetry study, through Comsol Multiphysics software. Results: Under a voltage of 10 V, microfibrils redistribute the E-field values focalizing the field streamlines in the spaces between the fibers, allowing the field to pass and reach maximum values up to 100 kV/m and values comparable with the bare electrodes’ device (without fibers). Discussion: Globally the median E-field inside the scaffolded electrodes is the 90% of the nominal field, allowing an adequate cells’ exposure

    Electromagnetic fields, oxidative stress, and neurodegeneration

    No full text
    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system

    A microdosimetric study of electropulsation on multiple realistically shaped cells. Effect of Neighbours

    No full text
    Over the past decades, the effects of ultrashort-pulsed electric fields have been used to investigate their action in many medical applications (e.g. cancer, gene electrotransfer, drug delivery, electrofusion). Promising aspects of these pulses has led to several in vitro and in vivo experiments to clarify their action. Since the basic mechanisms of these pulses have not yet been fully clarified, scientific interest has focused on the development of numerical models at different levels of complexity: atomic (molecular dynamic simulations), microscopic (microdosimetry) and macroscopic (dosimetry). The aim of this work is to demonstrate that, in order to predict results at the cellular level, an accurate microdosimetry model is needed using a realistic cell shape, and with their position and packaging (cell density) characterised inside the medium

    50-Hz Magnetic Field Impairs the Expression of Iron-related Genes in the in vitro SOD1G93A Model of Amyotrophic Lateral Sclerosis

    No full text
    PURPOSE: we characterized the response to the extremely low frequency magnetic field (ELF-MF) in an in vitro model of familial Amyotrophic Lateral Sclerosis (fALS), carrying two mutant variants of the superoxide dismutase 1 (SOD1) gene. MATERIALS AND METHODS: SH-SY5Y human neuroblastoma cells, stably over-expressing the wild type, the G93A or the H46R mutant SOD1 cDNA, were exposed to either the ELF-MF (50 Hz, 1 mT) or the sham control field, up to 72 hours. Analysis of i) viability, proliferation and apoptosis, ii) reactive oxygen species generation, and iii) assessment of the iron metabolism, were carried out in all clones in response to the MF exposure. RESULTS: we report that 50-Hz MF exposure induces: i) no change in proliferation and viability; ii) no modulation of the intracellular superoxide and H2O2 levels; iii) a significant deregulation in the expression of iron-related genes IRP1, MFRN1 and TfR1, this evidence being exclusive for the SOD1G93A clone and associated with a slight (P = 0.0512) difference in the total iron content. CONCLUSIONS: 50-Hz MF affects iron homeostasis in the in vitro SOD1G93A ALS model

    A proposed integrated systems approach to the radiation biology of cosmic interest: biophysics and molecular characterization of tissues irradiated with 14 MeV neutrons

    No full text
    Low-dose exposure of ionizing radiation triggers cell-to-cell communications and tissue interplay alterations. These alterations may play a fundamental role in non-cancer effects, overwhelming the theory of the DNA centric approach. Neither the mechanisms of these effects are fully understood nor is it possible to dissect the real incidence of quality and quantity of incident radiation during in vivo exposure, overall for particulate high-linear energy transfer (LET) radiation. Moreover, the knowledge of particulate high-LET radiation is mandatory for the human deep space exploration and to gain efficiency in the dose/effect ratio for radiotherapy. The aim of this mini-review was to describe an integrated system approach to the radiation biology of cosmic interest which could be set up in the framework of a future Sino-Italy cooperation among participating laboratories. We propose, in particular, to deliver X-rays and neutron irradiation at ENEA-FNG (Frascati, Italy) and heavy ion irradiation at IMP-CAS (Lanzhou, China) to in vivo models. The integrated system approach will focus on the correlation between the quality and quantity of radiation exposure and its in vivo biological effects. Wide range molecular profiling will analyze mainly cell and DNA damages and cell-to-cell and tissues interplay, meanwhile biochemical and chemical specific composition will be detected by infrared spectroscopy. The recently characterized alteration of leptin metabolism is discussed in more detail to present a successful example of systemic approach to cosmic radiation biology

    Evidence of association between aerosol properties and in-vitro cellular oxidative response to PM1, oxidative potential of PM2.5, a biomarker of RNA oxidation, and its dependency on combustion sources

    No full text
    The causal link between ambient PM2.5 and adverse health effects is still not clear enough, nor it is clear what factors (physical and/or chemical) contribute to PM2.5 toxicity and by what mechanism(s). With a view on this, we launched the CARE experiment, during which we performed a comprehensive characterisation of the physicochemical properties of fine and ultrafine particles under exposure levels dominated by the urban combustion aerosol, and their toxicological assessment through in-vitro tests (lung epithelia cells cultured at the ALI) directly under ambient conditions, oxidative potential (determined through 2′,7′-dichlorouorescin, OPDCFH), and human biomonitoring. We already reported about aerosol characterisation, and in-vitro model results during CARE. Building upon these, in this work we assess the combustion aerosol oxidative response through the analysis of consistency between the three independent aerosol oxidative responses obtained, and the exploration of any causality link with the combustion aerosol. This is the first time to our knowledge that combustion related PM2.5 physicochemical properties and its OPDCFH are compared to the cellular-oxidative response (C-OR) obtained through the PM in-vitro test carried out (for the first time) directly under atmospheric ambient conditions, and to certain biomarkers of oxidative damage to DNA/RNA (8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydro-2′-deoxyguanosine and 8-oxo-7,8 - dihydroguanosine). Our results provide a first evidence of a combustion-dependent association between the in vitro C-OR, the PM2.5 OPDCFH, and the urinary excretion of the 8-Oxo-7,8-dihydroguanosine. Yet this is not a substantial basis for drawing any cause-effect relationship. However, our findings support previous literature suggesting a link between combustion and oxidative response of PM2.5. Moreover, we add a consistency across completely independent oxidative response measurements with a possible dependence on the combustion traffic-related aerosol. This is a piece of information that may have important implications in the understanding of how combustion sources contribute to oxidative response related diseases
    corecore