29 research outputs found

    Opening the Black Box of the Radiation Belt Machine Learning Model

    Full text link
    Many Machine Learning (ML) systems, especially neural networks, are fundamentally regarded as black boxes since it is difficult to grasp how they function once they have been trained. Here, we tackle the issue of the interpretability of a high-accuracy ML model created to model the flux of Earth's radiation belt electrons. The Outer RadIation belt Electron Neural net model (ORIENT) uses only solar wind conditions and geomagnetic indices as input. Using the Deep SHAPley additive explanations (DeepSHAP) method, we show that the `black box' ORIENT model can be successfully explained. Two significant electron flux enhancement events observed by Van Allen Probes during the storm interval of 17 to 18 March 2013 and non storm interval of 19 to 20 September 2013 are investigated using the DeepSHAP method. The results show that the feature importances calculated from the purely data driven ORIENT model identify physically meaningful behavior consistent with current physical understanding.Comment: Under revie

    Modulation of chorus intensity by ULF waves deep in the inner magnetosphere

    Get PDF
    Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <∼ 0.3fce), but cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long

    Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves

    Get PDF
    Long-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (∼10 mHz) were also observed in the energy (W) range 50–300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ∼−200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180° (southward moving protons) at W ∼ 120 keV. This feature is explained by drift-bounce resonance (mωd ∼ ωb) of ∼120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density ( ) exhibits a bump-on-tail structure with occurring in the 1–10 keV energy range. This is unstable and can excite P2 waves through bounce resonance (ω ∼ ωb), where ω is the wave frequency

    GOES-R L1b Readiness Implementation and Management Plan

    Get PDF
    A complement of Readiness, Implementation and Management Plans (RIMPs) to facilitate management of post-launch product test activities for the official Geostationary Operational Environmental Satellite (GOES-R) Level 1b (L1b) products have been developed and documented. Separate plans have been created for each of the GOES-R sensors including: the Advanced Baseline Imager (ABI), the Extreme ultraviolet and X-ray Irradiance Sensors (EXIS), Geostationary Lightning Mapper (GLM), GOES-R Magnetometer (MAG), the Space Environment In-Situ Suite (SEISS), and the Solar Ultraviolet Imager (SUVI). The GOES-R program has implemented these RIMPs in order to address the full scope of CalVal activities required for a successful demonstration of GOES-R L1b data product quality throughout the three validation stages: Beta, Provisional and Full Validation. For each product maturity level, the RIMPs include specific performance criteria and required artifacts that provide evidence a given validation stage has been reached, the timing when each stage will be complete, a description of every applicable Post-Launch Product Test (PLPT), roles and responsibilities of personnel, upstream dependencies, and analysis methods and tools to be employed during validation. Instrument level Post-Launch Tests (PLTs) are also referenced and apply primarily to functional check-out of the instruments

    Development of Level 1b Calibration and Validation Readiness, Implementation and Management Plans for GOES-R

    Get PDF
    A complement of Readiness, Implementation and Management Plans (RIMPs) to facilitate management of post-launch product test activities for the official Geostationary Operational Environmental Satellite (GOES-R) Level 1b (L1b) products have been developed and documented. Separate plans have been created for each of the GOES-R sensors including: the Advanced Baseline Imager (ABI), the Extreme ultraviolet and X-ray Irradiance Sensors (EXIS), Geostationary Lightning Mapper (GLM), GOES-R Magnetometer (MAG), the Space Environment In-Situ Suite (SEISS), and the Solar Ultraviolet Imager (SUVI). The GOES-R program has implemented these RIMPs in order to address the full scope of CalVal activities required for a successful demonstration of GOES-R L1b data product quality throughout the three validation stages: Beta, Provisional and Full Validation. For each product maturity level, the RIMPs include specific performance criteria and required artifacts that provide evidence a given validation stage has been reached, the timing when each stage will be complete, a description of every applicable Post-Launch Product Test (PLPT), roles and responsibilities of personnel, upstream dependencies, and analysis methods and tools to be employed during validation. Instrument level Post-Launch Tests (PLTs) are also referenced and apply primarily to functional check-out of the instruments

    Near-Earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations.

    Get PDF
    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L ∼ 5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ∼40 s and a dispersionless injection of electrons up to ∼3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L &gt; 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons

    Nonlinear Drift Resonance Between Charged Particles and Ultralow Frequency Waves: Theory and Observations

    Full text link
    In Earth’s inner magnetosphere, electromagnetic waves in the ultralow frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift resonance theory, linearization is applied under the assumption of weak waveâ particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here we extend the drift resonance theory into a nonlinear regime, to formulate nonlinear trapping of particles in a waveâ carried potential well, and predict the corresponding observable signatures such as rolledâ up structures in particle energy spectrum. After considering how this manifests in particle data with finite energy resolution, we compare the predicted signatures with Van Allen Probes observations. Their good agreement provides the first observational evidence for the occurrence of nonlinear drift resonance, highlighting the importance of nonlinear effects in magnetospheric particle dynamics under ULF waves.Plain Language SummaryIn Earth’s Van Allen radiation belts, ultralow frequency (ULF) waves in the frequency range between 2 and 22 mHz play a crucial role in accelerating charged particles via a resonant process named drift resonance. When such a resonance occurs, a resonant particle observes a constant phase of the wave electric field, and it experiences a net energy excursion. In previous studies of drift resonance, a linearization approach is often applied with assumption of a weak waveâ particle energy exchange. In this study, we extend the linear theory into the nonlinear regime to formulate the particle behavior in the ULF wave field, and predict characteristic signatures of the nonlinear process observable from a virtual magnetospheric spacecraft. Such newly predicted signatures are found to agree with observations from the National Aeronautics and Space Administration’s Van Allen Probes, which provides the first identification of nonlinear drift resonance and highlights the importance of nonlinear effects in ULF waveâ particle interactions in the Van Allen radiation belts.Key PointsThe nonlinear theory of ULF waveâ particle drift resonance is developed to formulate the behavior of charged particles in ULF wave fieldSignatures of nonlinear drift resonance include rolledâ up structures and/or multiperiod oscillations in the particle energy spectrumIn situ observations of the newly predicted signatures validate the theory and provide a first identification of nonlinear drift resonancePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146432/1/grl57916_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146432/2/grl57916.pd

    The Future of Heliophysics Research through Targeted use of Constellations

    Get PDF
    This white paper seeks to outline the benefits and challenges of constellations, ranging from the Heliophysics System Observatory, to constellations consisting of a small number of spacecraft, to large-number constellations. In moving toward this constellation era, investments are required by our sponsors to best enable our continued scientific advancement in Solar and Space Physics

    Data from: Specifying high-altitude electrons using low-altitude LEO systems: the SHELLS model

    No full text
    The dataset includes a tarball of all of the data shown in the figures in the manuscript, along with the neural network coefficients as described in the Appendix of the manuscript
    corecore