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Abstract Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5
compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating
chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental
poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not
only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate
analysis shows consistence with observed chorus intensity variation at low frequency (f <∼ 0.3 fce), but
cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves.
This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, we
use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event
is spatially local and does not last long.

1. Introduction

Chorus emission is one of the whistler-mode waves occurring in the Earth’s magnetosphere in the typical
frequency range between 0.1 to 0.8 fce (fce is the equatorial electron gyrofrequency) [Tsurutani and Smith,
1977; Koons and Roeder, 1990]. Chorus usually occurs in two separate frequency bands within the frequency
range mentioned above, one is 0.1 to 0.5 fce (the lower band) and the other is above 0.5 fce (the upper band)
[Tsurutani and Smith, 1974; Burtis and Helliwell, 1976, 1969]. The chorus waves originate near the geomag-
netic equator outside the plasmapause [LeDocq et al., 1998; Lauben et al., 2002; Santolík et al., 2003] due to the
cyclotron resonant interaction with anisotropic plasma sheet electrons injected into the inner magnetosphere
in the 10–100 keV energy range [Li et al., 2009, 2010]. It is generally believed that the intensity and occur-
rence of chorus are associated with geomagnetic activity, and most of the chorus waves take place during
geomagnetic disturbances [Tsurutani and Smith, 1974; Meredith et al., 2001, 2003a, 2003b; Miyoshi et al., 2003;
Lyons et al., 2005].

Ultralow frequency (ULF) oscillation of geomagnetic field lines can be excited, in general, by sources external
or internal to the magnetosphere. Solar wind dynamic pressure fluctuations can be a substantial source for
magnetosphere ULF wave power [Kessel, 2008; Takahashi and Ukhorskiy, 2007; Dai et al., 2015]. ULF waves gen-
erated by external sources are compressional waves of fast-mode nature and characterized by a global-scale
azimuthal wavelength (or small azimuthal wave number). In contrast, internal instabilities excite more local-
ized ULF waves with a small azimuthal wavelength. The instabilities could be drift or drift-bounce instability
[Southwood, 1976; Dai et al., 2013] or drift mirror instability [Cheng and Lin, 1987; Chen and Hasegawa,
1991]. These two instabilities, which generally are coupled, are more effective in low-𝛽 and high-𝛽 plasma,
respectively.

The time scale of the chorus elements is about a tenth to a few tenths of seconds [Santolík et al., 2003].
Previous studies have shown that the intensity of chorus waves can be modulated by ULF waves on a few
seconds to a few minutes timescale [e.g., Tixier and Cornilleau-Wehrlin, 1986; Manninen et al., 2010]. Li et al.
[2011] have analyzed several events where the intensity of chorus waves can be modulated by the compres-
sional Pc4-Pc5 ULF waves with antiphase correlation between the magnetic field and electron density which

RESEARCH LETTER
10.1002/2016GL070280

Key Points:
• ULF wave modulation of pitch angle

distributions of both electrons and
protons and chorus intensity occurs
deep in the magnetosphere

• This ULF wave shows signatures
of fundamental poloidal mode of
field line resonance and mirror wave
nature

• Linear growth rate calculation
supports instability below 0.3 fce,
while observed chorus at higher
frequency requires nonlinear
mechanisms

Correspondence to:
Z. Xia,
Zhiyang.Xia@utdallas.edu

Citation:
Xia, Z., L. Chen, L. Dai,
S. G. Claudepierre, A. A. Chan,
A. R. Soto-Chavez, and G. D. Reeves
(2016), Modulation of chorus
intensity by ULF waves deep
in the inner magnetosphere,
Geophys. Res. Lett., 43, 9444–9452,
doi:10.1002/2016GL070280.

Received 1 JUL 2016

Accepted 29 AUG 2016

Accepted article online 5 SEP 2016

Published online 28 SEP 2016

©2016. American Geophysical Union.
All Rights Reserved.

XIA ET AL. CHORUS MODULATION BY ULF WAVES 9444

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2016GL070280


Geophysical Research Letters 10.1002/2016GL070280

is inferred from spacecraft potential. They found that the chorus intensity enhances with increased electron
density and with depletion of magnetic field and is weaker when the electron density reaches its valley and
magnetic field reaches its crest. This kind of modulations occurs in the large L shell area (8 to 12) where external
solar wind sources are likely the driver. In this paper, we present Van Allen Probes observation of a modu-
lation of chorus wave intensity by ULF waves event, which is excited internally deep in the magnetosphere
during a strong geomagnetic storm and also shows many other modulating signatures. The Van Allen Probes
(formerly known as the Radiation Belt Storm Probes (RBSP)) [Mauk et al., 2013] are capable of detecting the
upper hybrid resonance line, which enables calibration of density inferred from spacecraft potential and bet-
ter captures the density variation associated with ULF waves. The organization of this paper is as follows: Van
Allen Probes instrumentation is described in section 2, followed by the observation and the interpretation of
the modulation event in sections 3 and 4. Conclusions and discussion are given in section 5.

2. Van Allen Probes Instrumentation

The Van Allen Probes are two robotic spacecrafts equipped with identical instruments and move on nearly
identical orbits near the Earth’s equatorial plane.

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) [Kletzing et al., 2013] carries
two sensors, a triaxial fluxgate magnetometer (MAG) and a triaxial AC magnetic search coil magnetometer,
which provide comprehensive wave magnetic field measurements in the frequency range of 10 Hz to 400 kHz.
The Electric Field and Waves Suite (EFW) [Wygant et al., 2013] is used to study the electric fields in near-Earth
space; it provides not only the components of electric field but also a spacecraft potential estimate cover-
ing cold plasma densities of 0.1 to 100 cm−3. The empirical density-potential formula has been calibrated
according to EMFISIS upper hybrid resonance (UHR) lines, which provides more accurate characterization of
density variation associated with ULF waves than previous studies [e.g., Li et al., 2011] using spacecraft poten-
tial alone. The Energetic Particle, Composition, and Thermal Plasma Suite (ECT) [Spence et al., 2013] is made
up of three separate components: Helium, Oxygen, Proton, and Electron (HOPE) for the energy range 0.001 to
50 keV [Funsten et al., 2013]; Magnetic Electron Ion Spectrometer (MagEIS), for three different particle popula-
tions (ring current electrons ∼20 to ∼200 keV and radiation belt electrons >∼200 keV to ∼3 MeV, ring current
protons, and radiation belt protons 60 keV to 1 MeV) [Blake et al., 2013]; and the Relativistic Electron Proton
Telescope for the proton energy range ∼17 to >100 MeV and electron energy range ∼1.6 to >∼19 MeV
[Baker et al., 2013].

3. ULF Wave Observation

The ULF event of interest observed by Van Allen Probes occurs during a storm between 13:40UT and 14:30UT
on 6 July 2013. Figures 1a–1g show the variations of geomagnetic indexes and solar wind parameters over
3 days of 5–8 July. The red vertical line labeled t0 marks the time when RBSP B detected the modulation event,
and the green and blue vertical lines labeled t− and t+, respectively, are the last and next time periods when
RBSP A passes near the location where the modulation event was observed at t0. Figures 1h and 1i show the
orbits of the RBSP A and RBSP B projected on the equator plane along the field line in solar magnetic (SM)
coordinate. The projection of the RBSP B orbit in t0 is around x=−4 Re, y=3 Re in the SM equatorial plane,
while RBSP A traveled nearby (x=1 Re, y=3 Re). RBSP A moved through the event location at the two nearest
time periods, about 09:24 UT to 10:14 UT (denoted as t−) and 17:50 UT to 18:40 UT (denoted as t+) on 6 July
2013, both of which are about 4 h away from t0. We note that all the three time periods are within the storm
period which lasts for a whole day on 6 July. In these three time periods, the Kp, AE, and Dst indexes all have
high absolute values; the number density, and velocity of solar wind remain nearly constant at about 10 cm−3

and 340 km/s; and the interplanetary magnetic field Bz component remains negative (as low as −10 nT) over
the entire day of 6 July, leading to a moderate geomagnetic storm with Dst minimum ∼−80 nT.

This geomagnetic storm results in the generation of ULF waves deep inside the magnetosphere (L∼5) and
the corresponding modulation of chorus wave intensity, which will be the topics of this study. Figure 2 focuses
on the modulation event observed from RBSP B. Figures 2a and 2b show the variations of the plasma den-
sity from spacecraft potential with calibration by the UHR line from EMFISIS and the three components of
magnetic field fluctuation in the mean magnetic field aligned coordinate, radial component Br , azimuthal
component Ba, and parallel component Bp. The magnetic field fluctuation data are obtained from the origi-
nal MAG magnetic field data after detrending with a smooth time window of 300 s. From Figures 2a and 2b,

XIA ET AL. CHORUS MODULATION BY ULF WAVES 9445



Geophysical Research Letters 10.1002/2016GL070280

Figure 1. Overview of geomagnetic indexes and solar wind parameters from OMNI for the modulation event. (a) Kp,
(b) AE, (c) Dst index, (d) the solar wind density, (e) velocity, (f ) pressure, and (g) magnetic field through the period of the
storm event. The green, red and blue vertical lines denote the times t− , t0, and t+ , respectively (see text). (h and i) The
orbits projected on the equator plane along a dipole field line for the satellites RBSP A and RBSP B. Red lines in Figure 1h
highlight satellite orbits near t0, and green, red, and blue lines in Figure 1i highlight the orbits near t− , t0, and t+ .

we can clearly see the variation of density is out of phase with the variation of Bp, while the Ba and Br fluctua-
tions are weaker comparing to the Bp fluctuation, indicating that this ULF wave is a mostly compressional wave
with rather large amplitude Bp up to 10 nT. The period of the variation is about 150 s, which tells us that this
is a Pc4-Pc5 ULF wave. The observed ULF wave is consistent with the wave generation through a drift mirror
instability. In a pure drift mirror mode, Bp >> Br [Chen and Hasegawa, 1991], and in our event, the com-
pressional component Bp is about 2–3 times larger than the poloidal component Br (Figure 2b). Additional
consistent characteristics of the drift mirror mode [Hasegawa, 1969] include the followings: (1) the variation of
the magnetic pressure and the variation of the plasma pressure are out of phase and comparable (Figure 2c),
(2) the variation amplitude of perpendicular pressure is greater than that of parallel pressure (Figure 2c), (3)
plasma beta is large (𝛽perp up to 2) and (4) the electric field perturbation at the ULF wave frequency is rather
weak (not shown). In addition, the pressure of electrons exhibits similar characteristics but with much smaller
variations (not shown) than that of protons (Figure 2c). Such large 𝛽 (𝛽perp up to 2) closely approaches, but
not exceeding, that required by the linear instability of drift mirror mode expressed by the formula (24) in
Hasegawa [1969]. Possible reasons for this are the relaxation by nonlinear saturation due to the large magnetic
amplitude and the consideration of HOPE measurement (<∼ 50 keV) only.

Because of the presence of finite radial magnetic field perturbation (Br), we also check frequencies for pure
poloidal modes. We solve for the eigenperiods in a dipole magentic field using equation (6) of Cummings et al.
[1969] with L=5.5 (observation location), and adopting latitudinal dependence of mass density along a field
line, 𝜌(𝜆) = MiNeq cosm 𝜆, where observed equatorial electron density Neq = 10 cm−3, 𝜆 is the magnetic lati-
tude, m is the density index, and Mi is the average ion mass. Figure 3 shows calculation of fundamental, second
harmonic, and third harmonic poloidal mode periods as a function of Mi from 1 (all H+ ions) to 16 (all O+ ions)
and a function of m over a typical range from 1 to 6. The observed period (150 s) is close to the fundamental
period of the poloidal mode with Mi ∼ 1.5, with little dependence on the m value. HOPE data provide H+, He+,
and O+ density measurements in the energy range above 30 eV, which are about 1.75, 0.07, and 0.35 cm−3,
respectively, over the event period. Based on those ion densities, Mi is about 3.5. Because thermal H+ ions
(∼ eV) tend to be the dominant ion species, the value of Mi can be lower when taking in account ion
populations below 30 eV, which is not available due to positive spacecraft charge. The second harmonic period
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Figure 2. Relationship between particle distribution and ULF waves from RBSP B observations: (a) the variation
of plasma density from EFW s/c potential; (b) the variation of three components of magnetic field; (c) the variations
of the magnetic pressure (black) and the perpendicular (red) and parallel (blue) pressures of protons; pitch
angle distribution of electron phase space density at energies (d) 1046.67 eV, (e) 2620.96 eV, (f ) 31.9 keV, (g) 54.4 keV,
(h) 75.1 keV, and (i) 101.6 keV; and pitch angle distribution of proton phase space density at energies (j) 9631.9 eV,
(k) 15,236.9 eV, and (l) 62.74 keV. The two vertical red-dotted lines denotes ULF wave phases corresponding to plasma
density peaks.
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Figure 3. Calculation of poloidal mode periods as a function of average ion mass and field-aligned density index m.
Fundamental, second harmonic, and third harmonic poloidal modes are denoted by blue, green, and red lines,
respectively. The horizontal black line denotes the period of the observed ULF wave. The numbers next to the lines
represent the value of the density index m from 1 to 6.

is much shorter than the fundamental period and can match the observed period for a high value of m = 6 if
nearly half ions are O+, which is unlikely for our case. Comparison is even worse for second harmonic period
with lower m and also for the period of the third harmonic. If it were second or third harmonic, it would need
an unrealistically high-O+ concentration (requiring dominant ions should be O+ ions). We conclude that the
observed ULF wave is a coupling between a drift mirror and fundamental poloidal mode.

The observed ULF wave closely modulates both electron and proton pitch angle distributions. Figures 2d–2i
show electron phase space density (PSD) versus pitch angle at energy channels 1047 and 2621 eV from
the ECT-HOPE instrument and 32, 54, 75, and 102 keV from the ECT-MagEIS instrument. Figures 2j–2l show
proton PSD at energy channels 9632 and 15,237 eV from ECT-HOPE and 62.74 keV from ECT-MagEIS. The
distributions of both electrons (Figures 2d–2f ) and protons (Figures 2j–2l) are modulated by the ULF wave
in a similar fashion. The phase space densities of both protons and electrons increase especially near 90∘
pitch angle when the plasma density reaches its crest and Bp reaches its valley, while the phase space den-
sities decrease at the plasma density valley and Bp crest. This feature is highlighted by the area between
the two vertical red-dotted lines. After checking electron and proton distributions at other energies we note
that the electron energy ranging from 0.2 to 54 keV and the proton energy ranging from 5 to 63 keV are
involved in this kind of ULF modulation and that these modulation signatures are not present clearly beyond
these two energy ranges for electrons and ions respectively. Moreover, over a higher electron energy range
54.4 keV–101 kev (Figures 2g–2i), the electron distribution shows a different response at Bp valleys where
electron PSD at 90∘ tends to reduce and peak PSD goes to lower pitch angle. The transition of electron PSD
at 90∘ from out-of-phase with Bp to in-phase occurs over a relatively narrow energy range of 54–75 keV
(Figures 2g and 2h). Note that there is no clear signature of such a transition in the response of proton dis-
tribution in our event. The phase-jump transition of electron PSD reported here is somewhat different from
the transition of electron energy in drift-resonance response to ULF wave phase reported by Claudepierre
et al. [2013], where modulated electron flux variation shows a clear energy of peak variation amplitude and
the phase difference between electron flux variation and the ULF wave phase varies slowly as a function of
energy. If one assumes the phase-jump transition reported by our event is another kind of electron drift-
resonance signature, then it can be estimated, using f = nfd , that the ULF wave azimuthal number n ∼ 56,
where wave frequency f = 1∕150 Hz and drift frequency fd is calculated for electrons at energy 60 keV and
equatorial pitch angle 90∘ at L = 5.5. The value of n is a reasonable value for an internally or kinetically excited
magnetohydrodynamic wave. Further investigation of such electron behavior is beyond the scope of our
current study.

4. Chorus Wave Observation

Figure 4 shows the relationship between ULF and VLF waves. Figures 4a and 4b show the Bp variation and
the electron spectrum of 1046.67 eV, respectively, which are the same as Figures 2b and 2d. Figures 4c–4f
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Figure 4. Relationship of magnetic perturbation and VLF chorus waves: (a) the parallel magnetic field fluctuation
(same as the red line in Figure 2b), (b) pitch angle distribution of electron phase space density at energy 1046.67 eV,
(c) power spectrum density of wave electric field, (d) wave normal angle, (e) ellipticity, (f ) wave magnetic field, and
(g) the linear growth rate calculated. The white long dashed and short dashed lines represent fce and 0.5 fce,
respectively, and the yellow long dashed and short dashed lines represent 0.3 fce and 0.2 fce, respectively.

show, respectively, the spectras of wave electric field, wave normal angle, ellipticity, and wave magnetic field
from the EMFISIS measurement. At the valley of Bp and the crest of the electron phase space density, there
exists intense chorus wave magnetic and electric power below and above 0.5 fce with about 0∘ wave normal
angle and ellipticity near 1. Chorus waves turn on and off quasiperiodically over 14:10 UT to 14:20 UT with
time period close to the period of the ULF waves. Close examination shows that both upper and lower band
chorus waves are intensified at the valleys of Bp (showed by the two vertical lines in Figure 4) correspond-
ing to the increase of electron phase space density (Figure 4b), while chorus waves diminish at the crests of
Bp. This relation is in part similar to the modulation event Li et al. [2011] found, but our event occurred deep
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inside the magnetosphere where ULF wave is internally excited by ring current population. The set of ULF
waves, VLF waves, and particle distributions provides strong support that ULF waves can modulate chorus
wave intensity and that the variation of the electron distribution causes the chorus waves to turn on and off.
We should make following two notes. First, there is no clear chorus modulation prior to 14:10, although with
variation of electron phase space density and linear growth rate. Second, some lower band chorus bursts
(∼14:14 and 14:19) can occurs closer to density valleys (Bp crests) rather than density crests (Bp valleys). Those
inconsistencies might be attributed to two physical processes other than local linear growth. First, nonlinear
wave growth shows dependence on magnetic field topology, in particular the field-aligned variation of the
ambient magnetic field [Tao, 2014; Katoh and Omura, 2011], which varies with ULF wave phases and depends
on field line resonance (FLR) eigenmode structures. Second, propagation effect may also lead to wave refrac-
tion toward both lower and higher-density ducts [Katoh, 2014]. This is especially true for fine-scale density
variation associated with ULF wave of high azimuthal wave number.

Variations of electron pitch angle distribution are the response to ULF waves, rather than the consequence of
chorus waves scattering; this is supported by the following observations: (1) protons respond in similar fashion
to electrons while chorus can not effectively scatter protons and (2) the presence of the electron variations
already began at about 13:50 UT (Figures 2d–2f ), before the chorus wave variation (14:10 UT to 14:20 UT).
Based on parameters typical for this observation event, electron minimum gyroresonant energy for the lower
band chorus is several keV (not shown) and even lower for the upper band chorus. Thus, the phase jump near
50 keV mentioned above is unlikely a consequence of gyroresonance interaction.

To test the idea that electron variation is indeed responsible for chorus wave generation, linear instability anal-
ysis based on observed plasma condition is performed. The linear growth rate of whistler-mode waves can
be calculated by using the linear theory equation [Kennel and Petschek, 1966] and using measured parame-
ters, including plasma density (calibrated from upper hybrid resonant lines), background magnetic field, and
observed electron velocity distribution from the HOPE instrument. These measurement from Van Allen Probes
provides unambiguous parameters to make possible a definite test of the linear theory.

Figure 4g shows the growth rate as a function of time and frequency for parallel propagation. We also did
calculations for other wave normal angles up to the whistler-mode resonance cone angle and found that the
growth rate maximizes for parallel propagation. The result of linear growth rate analysis shows the coinci-
dence between the maximum of the growth rate and the occurrence of intense chorus waves at <∼ 0.3 fce,
which is consistent with the variation of electron flux changing the plasma instability and thus generating the
chorus waves. However, the frequency range of the growth rate enhancement and that of the chorus wave
do not always match, especially for higher-frequency portions. The growth rate above 0.5 fce is very low all
the time. This indicates that higher-frequency chorus waves, including upper band chorus, should be due to
a mechanism other than linear instability.

With twin Van Allen Probes we can infer whether this modulation is local or global by examining two simul-
taneous observations and estimate its time duration. Temporal and spatial scales of this modulation event
are checked using the Van Allen Probes pair. We checked the RBSP A data at t0, t−, and t+ (indicated by
Figure 1). No clear signatures of ULF waves and particle and chorus waves modulation are found at the
t± intervals, indicating that the event we analyzed only lasts no longer than a few hours. We also check
RBSP A observation at t0, which is about ∼2 − 3 RE from RBSP B, and find no clear signature of ULF wave
activity, either suggesting that the event captured by RBSP B is not a global ULF wave. Such spatially local
and temporal natures are consistent with internally excited ULF waves. This localized phenomena, occur-
ring at premidnight during the main phase, might be associated with the westward edge of partial ring
current (indicated by Figure 2c where thermal pressure increases with magnetic local time) developed from
fresh injection.

5. Conclusions and Discussion

In summary, in this study we present an event of chorus modulation by ULF waves deep inside the magneto-
sphere. Using Van Allen Probes observations, we analyzed the relationships between the intensity of chorus
wave and the magnitude of plasma density, magnetic field variation and the distribution of electrons and
protons. Moreover, we also calculate the linear whistler-mode growth rate to help understand the mechanism
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of the modulation of chorus waves. Then we combined the observations of both RBSP A and B to estimate
the temporal and spatial scales of this kind of modulation. Our conclusions are summarized as follows:

1. An event of ULF wave modulation of pitch angle distributions of both electrons and protons is reported
deep in the magnetosphere, which occurs during a geomagnetic storm with long lasting negative inter-
planetary magnetic field Bz .

2. This ULF wave shows signatures of fundamental poloidal mode of field line resonance and mirror wave
nature. At the crest of plasma density and the valley of the compressional component of the wave magnetic
field, the phase space density near pitch angle 90∘ increases for protons over 5–63 keV and for electrons
over 0.2–54 keV, while in contrast, the electron pitch angle distributions are notably different (strongly field
aligned) at the higher energies above 60 keV.

3. The ULF wave tends to modulate the electron distribution and thus the intensity of whistler-mode chorus
waves; consistency with the linear growth rate analysis of the observed electron distribution for whistler
mode at low frequency (<∼ 0.3 fce). The linear instability, however, cannot account for the observed chorus
at higher frequency (including the upper band chorus).

4. This ULF wave and modulation phenomenon is spatially local and does not last long.

Many observed modulation signatures along with our quantitative analysis, allow us to sort out the physical
processes behind the event. Here is our interpretation based on the observation and the analysis performed.
A local and temporal ULF wave with antiphase correlation between plasma density and compressional mag-
netic field component is generated internally deep in the magnetosphere, probably through a drift mirror
instability. Self-consistently, the generated ULF wave causes disturbances in both electron and ion pitch angle
distributions, whose anisotropy enhances in the crests of plasma density. The enhanced electron pitch angle
distribution leads to enhanced chorus wave intensity at the low-frequency range (<∼ 0.3 fce). Some other
nonlinear mechanisms further trigger the chorus wave generation at higher-frequency range, including the
upper band chorus. This conclusion provides strong observational support for nonlinear chorus wave gener-
ation mechanism, where linear growth rate at lower frequency is required and higher-frequency chorus can
be generated nonlinearly in the form of rising tone element [Tao, 2014; Katoh and Omura, 2011].

There are a variety of ULF waves, with or without plasma density variation, compressional, or transverse wave
magnetic field component, which are generated by different free energy. Beside chorus waves, there are
also other types of whistler-mode waves, such as plasmaspheric hiss or magnetosonic waves. Breneman et al.
[2015] present an event of plasmaspheric hiss modulated by ULF waves over a global scale, leading to mod-
ulated electron precipitation. Likewise, the modulated chorus emission might lead to modulated electron
precipitation, such as the formation of pulsating aurora [Nishimura et al., 2010; Jaynes et al., 2015]. General
questions on ULF waves generation and their modulatory effect on VLF waves and electron precipitation are
interesting and will be investigated with a continuing effort.
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