7 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Bispectral index to predict neurological outcome early after cardiac arrest.

    Full text link
    AIM OF THE STUDY: To address the value of continuous monitoring of bispectral index (BIS) to predict neurological outcome after cardiac arrest. METHODS: In this prospective observational study in adult comatose patients treated by therapeutic hypothermia after cardiac arrest we measured bispectral index (BIS) during the first 24 hours of intensive care unit stay. A blinded neurological outcome assessment by cerebral performance category (CPC) was done 6 months after cardiac arrest. RESULTS: Forty-six patients (48%) had a good neurological outcome at 6-month, as defined by a cerebral performance category (CPC) 1-2, and 50 patients (52%) had a poor neurological outcome (CPC 3-5). Over the 24h of monitoring, mean BIS values over time were higher in the good outcome group (38 +/- 9) compared to the poor outcome group (17 +/- 12) (p<0.001). Analysis of BIS recorded every 30 minutes provided an optimal prediction after 12.5h, with an area under the receiver operating characteristic curve (AUC) of 0.89, a specificity of 89% and a sensitivity of 86% using a cut-off value of 23. With a specificity fixed at 100% (sensitivity 26%) the cut-off BIS value was 2.4 over the first 271 minutes. In multivariable analyses including clinical characteristics, mean BIS value over the first 12.5h was a predictor of neurological outcome (p = 6E-6) and provided a continuous net reclassification index of 1.28% (p = 4E-10) and an integrated discrimination improvement of 0.31 (p=1E-10). CONCLUSIONS: Mean BIS value calculated over the first 12.5h after ICU admission potentially predicts 6-months neurological outcome after cardiac arrest

    Correction to: Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study (Intensive Care Medicine, (2021), 47, 2, (160-169), 10.1007/s00134-020-06234-9)

    No full text
    The original version of this article unfortunately contained a mistake. The members of the ESICM Trials Group Collaborators were not shown in the article but only in the ESM. The full list of collaborators is shown below. The original article has been corrected
    corecore