24 research outputs found

    Metaflammasome components in the human brain: a role in dementia with alzheimer's pathology?

    Get PDF
    Epidemiological and genetic studies have identified metabolic disorders and inflammation as risk factors for Alzheimer's disease (AD). Evidence in obesity and type-2 diabetes suggests a role for a metabolic inflammasome (“metaflammasome”) in mediating chronic inflammation in peripheral organs implicating IKKβ (inhibitor of nuclear factor kappa-B kinase subunit beta), IRS1 (insulin receptor substrate 1), JNK (c-jun N-terminal kinase), and PKR (double-stranded RNA protein kinase). We hypothesized that these proteins are expressed in the brain in response to metabolic risk factors in AD. Neocortex from 299 participants from the MRC Cognitive Function and Ageing Studies was analysed by immunohistochemistry for the expression of the phosphorylated (active) form of IKKβ [pSer176/180], IRS1 [pS312], JNK [pThr183/Tyr185] and PKR [pT451]. The data were analyzed to investigate whether the proteins were expressed together and in relation with metabolic disorders, dementia, Alzheimer's pathology and APOE genotype. We observed a change from a positive to a negative association between the proteins and hypertension according to the dementia status. Type-2 diabetes was negatively related with the proteins among participants without dementia; whereas participants with dementia and AD pathology showed a positive association with JNK. A significant association between IKKβ and JNK in participants with dementia and AD pathology was observed, but not in those without dementia. Otherwise, weak to moderate associations were observed among the protein loads. The presence of dementia was significantly associated with JNK and negatively associated with IKKβ and IRS1. Cognitive scores showed a significant positive relationship with IKKβ and a negative with IRS1, JNK and PKR. The proteins were significantly associated with pathology in Alzheimer's participants with the relationship being inverse or not significant in participants without dementia. Expression of the proteins was not related to APOE genotype. These findings highlight a role for these proteins in AD pathophysiology but not necessarily as a complex

    Expert United Kingdom consensus on the preservation of joint health in people with moderate and severe haemophilia A: A modified Delphi panel

    Get PDF
    Aim: For people with haemophilia A (PwHA), bleeding in the joints leads to joint damage and haemophilia-related arthropathy, impacting range of motion and life expectancy. Existing guidelines for managing haemophilia A support healthcare professionals (HCPs) and PwHA in their efforts to preserve joint health. However, such guidance should be reviewed, considering emerging evidence and consensus as presented in this manuscript. Methods: Fifteen HCPs experienced in the management of PwHA in the UK participated in a three-round Delphi panel. Consensus was defined at ≥70% of panellists agreeing or disagreeing for Likert-scale questions, and ≥70% selecting the same option for multiple- or single-choice questions. Questions not reaching consensus were revised for the next round. Results: 26.8% (11/41), 44.8% (13/29) and 93.3% (14/15) of statements reached consensus in Rounds 1, 2 and 3, respectively. HCPs agreed that prophylaxis should be offered to patients with a baseline factor VIII (FVIII) level of ≤5 IU/dL and that, where there is no treatment burden, the aim of prophylaxis should be to achieve a trough FVIII level ≥15 IU/dL and maintain a longer period with FVIII levels of ≥20-30 IU/dL to provide better bleed protection. The aspirational goal for PwHA is to prevent all joint bleeds, which may be achieved by maintaining normalised (50-150 IU/dL) FVIII levels. Conclusion: The panel of experts were largely aligned on approaches to preserving joint health in PwHA, and this consensus may help guide HCPs

    TREM2 Expression in the Human Brain: A Marker of Monocyte Recruitment

    Get PDF
    Abstract Mutation in the triggering receptor expressed on myeloid cells (TREM) 2 gene has been identified as a risk factor for several neurodegenerative diseases including Alzheimer’s disease (AD). Experimental studies using animal models of AD have highlighted a number of functions associated with TREM2 and its expression by microglial cells. It has therefore been assumed that this is also the case in humans. However, there is very limited information concerning the cellular expression of TREM2 in the human brain. As part of investigations of microglia using post-mortem resources provided by the Medical Research Council Cognitive Function and Ageing Studies (MRC-CFAS), we immunostained the cerebral cortex of 299 participants for TREM2 using the Sigma antibody HPA010917 and compared with the macrophage/microglial markers Iba1 and CD68. As expected, Iba1 and CD68 labelled microglia and perivascular macrophages. However, in most cases (284/299), the TREM2 antibody labelled monocytes within vascular lumens, but not microglia or perivascular macrophages. In contrast, in 5 out of 6 cases with acute infarcts, TREM2 immunoreaction identified cells within the brain parenchyma interpreted as recruited monocytes. Six cases with old infarcts contained phagocytic foamy macrophages which were CD68-positive but TREM2 negative. Our observations, using the HPA010917 anti-TREM2 antibody, suggest that TREM2 is not expressed by microglia but instead seems to be a marker of recruited monocytes in the human brain. This finding has implications with regards to the role of TREM2 as a risk factor, emphasizing the importance of systemic immune responses in the development and progression of Alzheimer’s disease.The study was supported in part by: a Special Project grant and a Programme grant from the MRC and the Department of Health; the UK NIHR Biomedical Research Centre for Ageing and Age—related Disease Award to the Newcastle-upon-Tyne Hospitals Foundation Trust; the Cambridge Brain Bank is supported by the NIHR Cambridge Biomedical Research Centre; The Cambridgeshire and Peterborough NIHR CLAHRC; Nottingham University Hospitals NHS Trust; University of Sheffield and the Sheffield Teaching Hospitals NHS Foundation Trust; The Thomas Willis Oxford Brain Collection, supported by the Oxford Biomedical Research Centre; The Walton Centre NHS Foundation Trust, Liverpool

    Expert United Kingdom consensus on the preservation of joint health in people with moderate and severe haemophilia A: A modified Delphi panel

    Get PDF
    \ua9 2024 The Authors. Haemophilia published by John Wiley & Sons Ltd.Aim: For people with haemophilia A (PwHA), bleeding in the joints leads to joint damage and haemophilia-related arthropathy, impacting range of motion and life expectancy. Existing guidelines for managing haemophilia A support healthcare professionals (HCPs) and PwHA in their efforts to preserve joint health. However, such guidance should be reviewed, considering emerging evidence and consensus as presented in this manuscript. Methods: Fifteen HCPs experienced in the management of PwHA in the UK participated in a three-round Delphi panel. Consensus was defined at ≥70% of panellists agreeing or disagreeing for Likert-scale questions, and ≥70% selecting the same option for multiple- or single-choice questions. Questions not reaching consensus were revised for the next round. Results: 26.8% (11/41), 44.8% (13/29) and 93.3% (14/15) of statements reached consensus in Rounds 1, 2 and 3, respectively. HCPs agreed that prophylaxis should be offered to patients with a baseline factor VIII (FVIII) level of ≤5 IU/dL and that, where there is no treatment burden, the aim of prophylaxis should be to achieve a trough FVIII level ≥15 IU/dL and maintain a longer period with FVIII levels of ≥20–30 IU/dL to provide better bleed protection. The aspirational goal for PwHA is to prevent all joint bleeds, which may be achieved by maintaining normalised (50–150 IU/dL) FVIII levels. Conclusion: The panel of experts were largely aligned on approaches to preserving joint health in PwHA, and this consensus may help guide HCPs

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    Occipital afferent activation of second order neurons in the trigeminocervical complex in rat

    No full text
    Stimulation of the greater occipital nerve produces excitation of second order neurons in the trigeminocervical complex. Given that neck pain is very common in primary headache disorders, this convergent excitation may play a role in pain referral from cervical structures. While previous studies have demonstrated a physiological model for this convergence, this study sought an anatomical approach to examine the distribution of second order neurons in the trigeminocervical complex receiving greater occipital nerve input. In addition, the role of glutamatergic NMDA receptor activation within the trigeminocervical complex in response to cervical afferents was studied. Noxious stimulation of the occipital muscle in rat using mustard oil and mineral oil produced significantly altered Fos expression in the trigeminocervical complex compared with the surgical control (H-4 = 31.3, P < 0.001, Kruskal-Wallis). Baseline expression was 11 (median, range 4, 17) fos positive cells in the trigeminocervical complex, occipital muscle treated with mustard oil produced 23 (17, 33) and mineral oil a smaller effect of 19 (15, 25) fos positive cells, respectively (P = 0.046). The effects of both mustard and mineral oil were reversed by the NMDA-receptor antagonist MK801. This study introduces a model for examining trigeminocervical complex activity after occipital afferent stimulation in the rat that has good anatomical resolution and demonstrates involvement of glutamatergic NMDA receptors at this important synapse. (c) 2006 Elsevier Ireland Ltd. All rights reserved
    corecore