425 research outputs found

    Cracked mercury dental amalgam as a possible cause of fever of unknown origin: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Sudden fever of unknown origin is quite a common emergency and may lead to hospitalization. A rise in body temperature can be caused by infectious diseases and by other types of medical condition. This case report is of a woman who had fever at night for several days and other clinical signs which were likely related to cracked dental mercury amalgam.</p> <p>Case presentation</p> <p>A healthy women developed fever many days after had cracked a mercury dental amalgam filling. Blood tests evidenced increased erythrocyte sedimentation rate, anemia and elevated white cell count; symptoms were headache and palpitations. Blood tests and symptoms normalized within three weeks of removal of the dental amalgam.</p> <p>Conclusion</p> <p>This case highlights the possible link between mercury vapor exposure from cracked dental amalgam and early activation of the immune system leading to fever of unknown origin.</p

    Rapid methods to detect organic mercury and total selenium in biological samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organic mercury (Hg) is a global pollutant of concern and selenium is believed to afford protection against mercury risk though few approaches exist to rapidly assess both chemicals in biological samples. Here, micro-scale and rapid methods to detect organic mercury (< 1.5 ml total sample volume, < 1.5 hour) and total selenium (Se; < 3.0 ml total volume, < 3 hour) from a range of biological samples (10-50 mg) are described.</p> <p>Results</p> <p>For organic Hg, samples are digested using Tris-HCl buffer (with sequential additions of protease, NaOH, cysteine, CuSO<sub>4</sub>, acidic NaBr) followed by extraction with toluene and Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>. The final product is analyzed via commercially available direct/total mercury analyzers. For Se, a fluorometric assay has been developed for microplate readers that involves digestion (HNO<sub>3</sub>-HClO<sub>4 </sub>and HCl), conjugation (2,3-diaminonaphthalene), and cyclohexane extraction. Recovery of organic Hg (86-107%) and Se (85-121%) were determined through use of Standard Reference Materials and lemon shark kidney tissues.</p> <p>Conclusions</p> <p>The approaches outlined provide an easy, rapid, reproducible, and cost-effective platform for monitoring organic Hg and total Se in biological samples. Owing to the importance of organic Hg and Se in the pathophysiology of Hg, integration of such methods into established research monitoring efforts (that largely focus on screening total Hg only) will help increase understanding of Hg's true risks.</p

    Investigation into mercury bound to biothiols: structural identification using ESI–ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS

    Get PDF
    Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)2, Hg(GS)2, MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury–amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants

    The plausibility of a role for mercury in the etiology of autism: a cellular perspective

    Get PDF
    Autism is defined by a behavioral set of stereotypic and repetitious behavioral patterns in combination with social and communication deficits. There is emerging evidence supporting the hypothesis that autism may result from a combination of genetic susceptibility and exposure to environmental toxins at critical moments in development. Mercury (Hg) is recognized as a ubiquitous environmental neurotoxin and there is mounting evidence linking it to neurodevelopmental disorders, including autism. Of course, the evidence is not derived from experimental trials with humans but rather from methods focusing on biomarkers of Hg damage, measurements of Hg exposure, epidemiological data, and animal studies. For ethical reasons, controlled Hg exposure in humans will never be conducted. Therefore, to properly evaluate the Hg-autism etiological hypothesis, it is essential to first establish the biological plausibility of the hypothesis. This review examines the plausibility of Hg as the primary etiological agent driving the cellular mechanisms by which Hg-induced neurotoxicity may result in the physiological attributes of autism. Key areas of focus include: (1) route and cellular mechanisms of Hg exposure in autism; (2) current research and examples of possible genetic variables that are linked to both Hg sensitivity and autism; (3) the role Hg may play as an environmental toxin fueling the oxidative stress found in autism; (4) role of mitochondrial dysfunction; and (5) possible role of Hg in abnormal neuroexcitory and excitotoxity that may play a role in the immune dysregulation found in autism. Future research directions that would assist in addressing the gaps in our knowledge are proposed

    Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery

    Get PDF
    The end-Permian mass extinction, ~252 million years ago, is notable for a complex recovery period of ~5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe–S–C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota

    Mercury in Nelson's Sparrow Subspecies at Breeding Sites

    Get PDF
    Background: Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson’s Sparrows (Ammodramus nelsoni) use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson’s Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies

    Influence of mercury exposure on blood pressure, resting heart rate and heart rate variability in French Polynesians: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Populations which diet is rich in seafood are highly exposed to contaminants such as mercury, which could affect cardiovascular risk factors</p> <p>Objective</p> <p>To assess the associations between mercury and blood pressure (BP), resting heart rate (HR) and HR variability (HRV) among French Polynesians</p> <p>Methods</p> <p>Data were collected among 180 adults (≥ 18 years) and 101 teenagers (12-17 years). HRV was measured using a two-hour ambulatory electrocardiogram (Holter) and BP was measured using a standardized protocol. The association between mercury and HRV and BP parameters was studied using analysis of variance (ANOVA) and analysis of covariance (ANCOVA)</p> <p>Results</p> <p>Among teenagers, the high frequency (HF) decreased between the 2<sup>nd </sup>and 3<sup>rd </sup>tertile (380 vs. 204 ms<sup>2</sup>, p = 0.03) and a similar pattern was observed for the square root of the mean squared differences of successive R-R intervals (rMSSD) (43 vs. 30 ms, p = 0.005) after adjusting for confounders. In addition, the ratio low/high frequency (LF/HF) increased between the 2<sup>nd </sup>and 3<sup>rd </sup>tertile (2.3 vs. 3.0, p = 0.04). Among adults, the standard deviation of R-R intervals (SDNN) tended to decrease between the 1<sup>st </sup>and 2<sup>nd </sup>tertile (84 vs. 75 ms, p = 0.069) after adjusting for confounders. Furthermore, diastolic BP tended to increase between the 2<sup>nd </sup>and 3<sup>rd </sup>tertile (86 vs. 91 mm Hg, p = 0.09). No significant difference was observed in resting HR or pulse pressure (PP)</p> <p>Conclusions</p> <p>Mercury was associated with decreased HRV among French Polynesian teenagers while no significant association was observed with resting HR, BP, or PP among teenagers or adults</p

    Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment

    Get PDF
    BACKGROUND: Biomarkers for mercury (Hg) exposure have frequently been used to assess exposure and risk in various groups of the general population. We have evaluated the most frequently used biomarkers and the physiology on which they are based, to explore the inter-individual variations and their suitability for exposure assessment. METHODS: Concentrations of total Hg (THg), inorganic Hg (IHg) and organic Hg (OHg, assumed to be methylmercury; MeHg) were determined in whole blood, red blood cells, plasma, hair and urine from Swedish men and women. An automated multiple injection cold vapour atomic fluorescence spectrophotometry analytical system for Hg analysis was developed, which provided high sensitivity, accuracy, and precision. The distribution of the various mercury forms in the different biological media was explored. RESULTS: About 90% of the mercury found in the red blood cells was in the form of MeHg with small inter-individual variations, and part of the IHg found in the red blood cells could be attributed to demethylated MeHg. THg in plasma was associated with both IHg and MeHg, with large inter-individual variations in the distribution between red blood cells and plasma. THg in hair reflects MeHg exposure at all exposure levels, and not IHg exposure. The small fraction of IHg in hair is most probably emanating from demethylated MeHg. The inter-individual variation in the blood to hair ratio was very large. The variability seemed to decrease with increasing OHg in blood, most probably due to more frequent fish consumption and thereby blood concentrations approaching steady state. THg in urine reflected IHg exposure, also at very low IHg exposure levels. CONCLUSION: The use of THg concentration in whole blood as a proxy for MeHg exposure will give rise to an overestimation of the MeHg exposure depending on the degree of IHg exposure, why speciation of mercury forms is needed. THg in RBC and hair are suitable proxies for MeHg exposure. Using THg concentration in plasma as a measure of IHg exposure can lead to significant exposure misclassification. THg in urine is a suitable proxy for IHg exposure
    corecore