4,334 research outputs found

    Creating citizen-consumers? Public service reform and (un)willing selves

    No full text
    About the book: Postmodern theories heralded the "death of the subject", and thereby deeply contested our intuition that we are free and willing selves. In recent times, the (free) will has come under attack yet again. Findings from the neuro- and cognitive sciences claim the concept of will to be scientifically untenable, specifying that it is our brain rather than our 'self' which decides what we want to do. In spite of these challenges however, the willing self has come to take centre stage in our society: juridical and moral practices ascribing guilt, or the organization of everyday life attributing responsibilities, for instance, can hardly be understood without taking recourse to the willing subject. In this vein, the authors address topics such as the genealogy of the concept of willing selves, the discourse on agency in neuroscience and sociology, the political debate on volition within neoliberal and neoconservative regimes, approaches toward novel forms of relational responsibility as well as moral evaluations in conceptualizing autonomy

    Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems

    Get PDF
    10.1137/S0036142901393814SIAM Journal on Numerical Analysis4062352-2367SJNA

    Field-induced Commensurate-Incommensurate phase transition in a Dzyaloshinskii-Moriya spiral antiferromagnet

    Full text link
    We report an observation of a commensurate-incommensurate phase transition in a Dzyaloshinskii-Moriya spiral magnet Ba_2CuGe_2O_7. The transition is induced by applying a magnetic field in the plane of spin rotation. In this experiment we have direct control over the strength of the commensurate potential, while the preferred incommensurate period of the spin system remains unchanged. Experimental results for the period of the soliton lattice and bulk magnetization as a function of external magnetic field are in quantitative agreement with theory.Comment: 4 pages, 4 figures, submitted to PR

    Photodissociation in proto-planetary nebulae. Hydrodynamical simulations and solutions for low-velocity multi-lobes

    Full text link
    We explore the effects of photodissociation at the stages of post-asymptotic giant branch stars to find a mechanism able to produce multi-polar shapes. We perform two-dimensional gasdynamical simulations to model the effects of photodissociation in proto-planetary nebulae. We find that post-asymptotic giant branch stars with 7,000 K or hotter are able to photodissociate a large amount of the circumstellar gas. We compute several solutions for nebulae with low-velocity multi-lobes. We find that the early expansion of a dissociation front is crucial to understand the number of lobes in proto-planetary nebulae. A dynamical instability appears when cooling is included in the swept-up molecular shell. This instability is similar to the one found in photoionization fronts, and it is associated with the thin-shell Vishniac instability. The dissociation front exacerbates the growth of the thin-shell instability, creating a fast fragmentation in shells expanding into media with power-law density distributions such as r^-2.Comment: 4 pages, 2 figures, acepted by A&A Letter

    Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?

    Get PDF
    The remote and hostile Southern Ocean is home to a diverse and rich community of life that thrives in an environment dominated by glaciations and strong currents. Marine biological studies in the region date back to the nineteenth century, but despite this long history of research, relatively little is known about the complex interactions between the highly seasonal physical environment and the species that inhabit the Southern Ocean. Oceanographically, the Southern Ocean is a major driver of global ocean circulation and plays a vital role in interacting with the deep water circulation in each of the Pacific, Atlantic, and Indian oceans. The Census of Antarctic Marine Life and the Scientific Committee on Antarctic Research Marine Biodiversity Information Network (SCAR-MarBIN) have strived to coordinate and unify the available scientific expertise and biodiversity data to improve our understanding of Southern Ocean biodiversity. Taxonomic lists for all marine species have been compiled to form the Register of Antarctic Marine Species, which currently includes over 8,200 species. SCAR-MarBIN has brought together over 1 million distribution records for Southern Ocean species, forming a baseline against which future change can be judged. The sample locations and numbers of known species from different regions were mapped and the depth distributions of benthic samples plotted. Our knowledge of the biodiversity of the Southern Ocean is largely determined by the relative inaccessibility of the region. Benthic sampling is largely restricted to the shelf; little is known about the fauna of the deep sea. The location of scientific bases heavily influences the distribution pattern of sample and observation data, and the logistical supply routes are the focus of much of the at-sea and pelagic work. Taxa such as mollusks and echinoderms are well represented within existing datasets with high numbers of georeferenced records. Other taxa, including the species-rich nematodes, are represented by just a handful of digital records

    Leading-effect vs. Risk-taking in Dynamic Tournaments: Evidence from a Real-life Randomized Experiment

    Get PDF
    Two 'order effects' may emerge in dynamic tournaments with information feedback. First, participants adjust effort across stages, which could advantage the leading participant who faces a larger 'effective prize' after an initial victory (leading-effect). Second, participants lagging behind may increase risk at the final stage as they have 'nothing to lose' (risk-taking). We use a randomized natural experiment in professional two-game soccer tournaments where the treatment (order of a stage-specific advantage) and team characteristics, e.g. ability, are independent. We develop an identification strategy to test for leading-effects controlling for risk-taking. We find no evidence of leading-effects and negligible risk-taking effects

    Principles of Stakes Fairness in Sport

    Get PDF
    Fairness in sport is not just about assigning the top prizes to the worthiest competitors. It is also about the way the prize structure itself is organised. For many sporting competitions, although it may be acceptable for winners to receive more than losers, it can seem unfair for winners to take everything and for losers to get nothing. Yet this insight leaves unanswered some difficult questions about what stakes fairness requires and which principles of stakes fairness are appropriate for particular competitions. In this article I specify a range of different principles of stakes fairness (ten in total) that could regulate sporting competitions. I also put forward a theoretical method for pairing up appropriate principles of stakes fairness with given sporting competitions. Specifically, I argue that the underlying rationales for holding sporting competitions can provide useful guides for identifying appropriate principles of stakes fairness. I then seek to clarify and work through some of the implications of this method for a sample of real world controversies over sporting prize structures. I also attempt to refine the method in response to two possible objections from indeterminacy and relativism. Finally, I compare and contrast my conclusions with more general philosophical debates about justice

    Modal Logics of Topological Relations

    Full text link
    Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations between regions in topological spaces such as the real plane. We investigate the expressive power and computational complexity of logics obtained in this way. It turns out that our modal logics have the same expressive power as the two-variable fragment of first-order logic, but are exponentially less succinct. The complexity ranges from (undecidable and) recursively enumerable to highly undecidable, where the recursively enumerable logics are obtained by considering substructures of structures induced by topological spaces. As our undecidability results also capture logics based on the real line, they improve upon undecidability results for interval temporal logics by Halpern and Shoham. We also analyze modal logics based on the five RCC5 relations, with similar results regarding the expressive power, but weaker results regarding the complexity
    corecore