36,887 research outputs found

    The response of self-graviting protostellar discs to slow reduction in cooling timescale: the fragmentation boundary revisited

    Full text link
    A number of previous studies of the fragmentation of self-gravitating protostellar discs have modeled radiative cooling with a cooling timescale (t_{cool}) parameterised as a simple multiple (beta_{cool}) of the local dynamical timescale. Such studies have delineated the `fragmentation boundary' in terms of a critical value of beta_{cool} (beta_{crit}), where the disc fragments if beta_{cool} < beta_{crit}. Such an approach however begs the question of how in reality a disc could ever be assembled with beta_{cool} < beta_{crit}. Here we adopt the more realistic approach of gradually reducing beta_{cool}, as might correspond to changes in thermal regime due to secular changes in the disc density profile. We find that when beta_{cool} is gradually reduced (on a timescale longer than t_{cool}), the disc is stabilised against fragmentation, compared with models in which beta_{cool} is reduced rapidly. We therefore conclude that a disc's ability to remain in a self-regulated, self-gravitating state (without fragmentation) is partly dependent on its thermal history, as well as its current cooling rate. Nevertheless, a slow reduction in t_{cool} appears only to lower the fragmentation boundary by about a factor two in t_{cool} and thus only permits maximum alpha values (parameterising the efficiency of angular momentum transfer in the disc) that are about a factor two higher than determined hitherto. Our results therefore do not undermine the notion of a fundamental upper limit to the heating rate that can be delivered by gravitational instabilities before the disc is subject to fragmentation. An important implication of this work, therefore, is that self-gravitating discs can enter into the regime of fragmentation via secular evolution and it is not necessary to invoke rapid (impulsive) events to trigger fragmentation.Comment: accepted for publication in MNRA

    Assessment of risk to Boeing commerical transport aircraft from carbon fibers

    Get PDF
    The possible effects of free carbon fibers on aircraft avionic equipment operation, removal costs, and safety were investigated. Possible carbon fiber flow paths, flow rates, and transfer functions into the Boeing 707, 727, 737, 747 aircraft and potentially vulnerable equipment were identified. Probabilities of equipment removal and probabilities of aircraft exposure to carbon fiber were derived

    Constraints on the formation mechanism of the planetary mass companion of 2MASS 1207334-393254

    Get PDF
    In this paper we discuss the nature and the possible formation scenarios of the companion of the brown dwarf 2MASS 1207334-393254. We initially discuss the basic physical properties of this object and conclude that, although from its absolute mass (5MJup5M_{\rm Jup}), it is a planetary object, in terms of its mass ratio qq and of its separation aa with respect to the primary brown dwarf, it is consistent with the statistical properties of binaries with higher primary mass. We then explore the possible formation mechanism for this object. We show that the standard planet formation mechanism of core accretion is far too slow to form this object within 10 Myr, the observed age of the system. On the other hand, the alternative mechanism of gravitational instability (proposed both in the context of planet and of binary formation) may, in principle, work and form a system with the observed properties.Comment: 5 pages, MNRAS in pres

    The relation between accretion rates and the initial mass function in hydrodynamical simulations of star formation

    Get PDF
    We analyse a hydrodynamical simulation of star formation. Sink particles in the simulations which represent stars show episodic growth, which is presumably accretion from a core that can be regularly replenished in response to the fluctuating conditions in the local environment. The accretion rates follow m˙m2/3\dot{m} \propto m^{2/3}, as expected from accretion in a gas-dominated potential, but with substantial variations over-laid on this. The growth times follow an exponential distribution which is tapered at long times due to the finite length of the simulation. The initial collapse masses have an approximately lognormal distribution with already an onset of a power-law at large masses. The sink particle mass function can be reproduced with a non-linear stochastic process, with fluctuating accretion rates m2/3\propto m^{2/3}, a distribution of seed masses and a distribution of growth times. All three factors contribute equally to the form of the final sink mass function. We find that the upper power law tail of the IMF is unrelated to Bondi-Hoyle accretion.Comment: 13 pages, 13 figures, MNRAS accepte

    Group study of an 'undercover' test for visuospatial neglect: Invisible cancellation can reveal more neglect than standard cancellation

    Get PDF
    Visual neglect is a relatively common deficit after brain damage, particularly strokes. Cancellation tests provide standard clinical measures of neglect severity and deficits in daily life. A recent single-case study introduced a new variation on standard cancellation. Instead of making a visible mark on each target found, the patient made invisible marks (recorded with carbon paper underneath, for later scoring). Such invisible cancellation was found to reveal more neglect than cancellation with visible marks. Here we test the generality of this. Twenty three successive cases with suspected neglect each performed cancellation with visible or invisible marks. Neglect of contralesional targets was more pronounced with invisible marks. Indeed, about half of the patients only showed neglect in this version. For cases showing more neglect with invisible marks, stronger neglect of contralesional targets correlated with more revisits to ipsilesional targets for making additional invisible marks upon them. These results indicate that cancellation with invisible marks can reveal more neglect than standard cancellation with visible marks, while still providing a practical bedside test. Our observations may be consistent with recent proposals that demands on spatial working memory (required to keep track of previously found items only when marked invisibly) can exacerbate spatial neglect
    corecore