2,723 research outputs found

    Circular 75

    Get PDF
    Record keeping is an important tool in the management of any productive enterprise. In the area of reindeer herding, consistent and accurate record keeping can provide valuable information for making profitable herd management decisions. Making the right decisions can mean the difference between a non-productive herd and one that yields high profits. In this paper, it will be shown how keeping records can contribute to decision making and how computers can help the record keeping process

    Dynamic information processing states revealed through neurocognitive models of object semantics.

    Get PDF
    Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations - a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time.This is the fnal version. It was first published by Taylor and Francis at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337742/

    College and University Ranking Systems: Global Perspectives and American Challenges

    Get PDF
    Examines how higher education ranking systems function, how other countries use ranking systems, and the impact of college rankings in the United States on student access, choice, and opportunity

    The SQUID Handbook

    Get PDF
    This two-volume handbook offers a comprehensive and well coordinated presentation of SQUIDs (Superconducting Quantum Interference Devices), including device fundamentals, design, technology, system construction and multiple applications. It is intended to bridge the gap between fundamentals and applications, and will be a valuable textbook reference for graduate students and for professionals engaged in SQUID research and engineering. It will also be of use to specialists in multiple fields of practical SQUID applications, from human brain research and heart diagnostics to airplane and nuclea

    Understanding What We See: How We Derive Meaning From Vision.

    Get PDF
    Recognising objects goes beyond vision, and requires models that incorporate different aspects of meaning. Most models focus on superordinate categories (e.g., animals, tools) which do not capture the richness of conceptual knowledge. We argue that object recognition must be seen as a dynamic process of transformation from low-level visual input through categorical organisation to specific conceptual representations. Cognitive models based on large normative datasets are well-suited to capture statistical regularities within and between concepts, providing both category structure and basic-level individuation. We highlight recent research showing how such models capture important properties of the ventral visual pathway. This research demonstrates that significant advances in understanding conceptual representations can be made by shifting the focus from studying superordinate categories to basic-level concepts.We thank William Marslen-Wilson for his helpful comments on this manuscript. The research leading to these results has received funding to LKT from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ ERC Grant agreement n° 249640.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.tics.2015.08.00

    Object-specific semantic coding in human perirhinal cortex.

    Get PDF
    Category-specificity has been demonstrated in the human posterior ventral temporal cortex for a variety of object categories. Although object representations within the ventral visual pathway must be sufficiently rich and complex to support the recognition of individual objects, little is known about how specific objects are represented. Here, we used representational similarity analysis to determine what different kinds of object information are reflected in fMRI activation patterns and uncover the relationship between categorical and object-specific semantic representations. Our results show a gradient of informational specificity along the ventral stream from representations of image-based visual properties in early visual cortex, to categorical representations in the posterior ventral stream. A key finding showed that object-specific semantic information is uniquely represented in the perirhinal cortex, which was also increasingly engaged for objects that are more semantically confusable. These findings suggest a key role for the perirhinal cortex in representing and processing object-specific semantic information that is more critical for highly confusable objects. Our findings extend current distributed models by showing coarse dissociations between objects in posterior ventral cortex, and fine-grained distinctions between objects supported by the anterior medial temporal lobes, including the perirhinal cortex, which serve to integrate complex object information.This work was supported by funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007--2013)/ ERC Grant agreement no. 249640 to L.K.T

    Genetics of rheumatic disease

    Get PDF
    Many of the chronic inflammatory and degenerative disorders that present to clinical rheumatologists have a complex genetic aetiology. Over the past decade a dramatic improvement in technology and methodology has accelerated the pace of gene discovery in complex disorders in an exponential fashion. In this review, we focus on rheumatoid arthritis, systemic lupus erythematosus and ankylosing spondylitis and describe some of the recently described genes that underlie these conditions and the extent to which they overlap. The next decade will witness a full account of the main disease susceptibility genes in these diseases and progress in establishing the molecular basis by which genetic variation contributes to pathogenesis

    Nonlinear effects in the Josephson-vortex terahertz photonic crystal

    Get PDF
    Analysis has been made of the amplitudes of the second and third harmonics when pumping a discrete frequency to the Josephson-vortex photonic crystal within the THz range of the electromagnetic spectrum. The results of numerical simulations show that there are certain resonance frequencies for these harmonics where the amplitudes are strongly enhanced. The frequencies at which these resonances occur can be tuned by an applied magnetic field and tilting the material with respect to the incident radiation. For the second harmonic it has been possible to describe these resonances analytically with a resonance approximation which displays good agreement with numerical simulations at and near the resonances. A similar perturbative method has been used to simulate the nonlinear mixing of two discrete THz frequencies in the JV photonic crystal, producing resonances for harmonics at the sum and the difference of these two input frequencies. This method can allow a high degree of control over the harmonic frequencies produced

    Oscillatory dynamics of perceptual to conceptual transformations in the ventral visual pathway

    Get PDF
    Object recognition requires dynamic transformations of low-level visual inputs to complex semantic representations. While this process depends on the ventral visual pathway (VVP), we lack an incremental account from low-level inputs to semantic representations, and the mechanistic details of these dynamics. Here we combine computational models of vision with semantics, and test the output of the incremental model against patterns of neural oscillations recorded with MEG in humans. Representational Similarity Analysis showed visual information was represented in alpha activity throughout the VVP, and semantic information was represented in theta activity. Furthermore, informational connectivity showed visual information travels through feedforward connections, while visual information is transformed into semantic representations through feedforward and feedback activity, centered on the anterior temporal lobe. Our research highlights that the complex transformations between visual and semantic information is driven by feedforward and recurrent dynamics resulting in object-specific semantics
    • …
    corecore