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|I Dynamic information processing states revealed through neurocognitive
models of object semantics
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Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object
information. To fully understand how different forms of information about objects are represented and processed in the
brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic
knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are
instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic
information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive
rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform
supports the formation of object-specific semantic representations — a conjunctive process primarily driven by the
perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object
properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive
activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity.
This kind of approach allows us to move towards uncovering the information processing states of the brain and how they
evolve over time.
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Recognising objects is fundamental to acting appropri-
ately in the environment. The rapid extraction of semantic
information from visual images is one of the first
cognitive operations leading to complex behaviours such
as object identification, object use and navigational
planning. Extracting semantic information from our visual
world necessitates that sensory information is transformed
into more abstract, meaningful information. Such transi-
tions from perception to semantics remain unclear in terms
of the types of information that are processed, and how
this information changes and develops over time. Critical
to understanding this complex informational transforma-
tion is the use of computational and cognitive models of
vision and semantics to reveal what time-varying neural
activity reflects in terms of information processing states
and mental representations. This is illustrated using three
examples using magnetoencephalography (MEG), a neu-
roimaging technique that records neural responses with
millisecond temporal resolution and allows us to track
how objects are processed over time. Finally, I chart the
time-course of activating semantic knowledge during
object recognition focusing on three main issues: how
the initial perceptual information processing states give
rise to semantic information, what is the nature of this
semantic information and how do semantic representations
change over time.

Modelling information processing states in the brain

The observed brain activity at a large-scale population level
of the system — whether it comes from functional magnetic
resonance imaging (fMRI), MEG, electroencephalography
(EEG), positron emission tomography (PET), etc. —can be
considered to be a manifestation of how particular aspects of
the stimuli are encoded in the brain. In this respect, mental
representations reflect the relationship between particular
aspects of the stimuli and dynamic activity in the brain — in
other words, a representation can be viewed as reflecting the
current information processing state of the brain, and will be
constrained as a function of the regional inputs, environ-
mental constraints and computational properties of the
particular brain region.

One approach to uncovering the information processing
states of the brain is to have an explicit model of the
experimental conditions or task, and to determine to what
extent the model can explain the observed data. To illustrate,
consider the brain activity patterns within the posterior
fusiform gyrus for a set of visual objects. The variability in
activation between objects is a vital source of information
about the nature of information processing in this region,
and elucidating the properties of the experimental conditions
that track this variability is key to understanding the
cognitive functions of the region. By developing models
of the stimulus we can explicitly quantify various aspects of
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the stimulus, and test if these attributes are reflected in
brain activity. Finding a significant relationship between the
stimulus attributes and the brain responses can be used to
infer what specific forms of information are processed by a
particular brain region. Clearly this requires that we have a
cognitive or computational model of our stimuli with which
to interpret such variability. It is here that multidimensional
models of object semantics can be highly informative in
uncovering what kind of information processing gives rise
to the mental representations of visual objects observed in
human neuroimaging. Further, using techniques like MEG
we can ask highly detailed questions about when a given
brain region processes specific forms of information and
how the information content changes over time (see Schyns,
Petro, & Smith, 2007 for example). Thus by combining
information rich stimulus information with time-varying
neural signals we can begin to uncover the dynamic
information processing states underlying object recognition.

The dynamic nature of semantic processing: evidence
from MEG and feature-based models of conceptual
representations

The primary research question discussed here concerns
how different cognitive aspects of object recognition are
processed in the brain, and how this changes and evolves
over time. One particularly useful approach to obtaining a
window into the information processing states underlying
meaningful object recognition is provided by formulating
detailed, multidimensional cognitive accounts of object
semantics which provide a rich source of information that
can be tested against neural activity across space and time.

To understand how different properties of objects are
processed over time we have dissected our stimuli (objects)
into their visual and semantic attributes. While visual image
statistics can be extracted from the pictorial images,
cognitive accounts of object semantics are needed to extract
measures of object meaning. The approach we have taken to
representing the semantics of individual objects is provided
by models where semantic representations are composi-
tional in nature, being represented in a distributed system of
semantic primitives (Cree & McRae, 2003; Farah &
McClelland, 1991; Garrard, Lambon Ralph, Hodges, &
Patterson, 2001; Humphreys, Lamote, & Lloyd-Jones, 1995;
Moss, Tyler, & Taylor, 2007; Rogers & McClelland, 2004;
Rogers & Patterson, 2007; Taylor, Devereux, & Tyler, 2011;
Tyler & Moss, 2001; Vigliocco, Vinson, Lewis, & Garrett,
2004). The derived semantic features can come from
property norming data, where participants are asked to list
conceptual properties, or features, of each concept (e.g. has
legs is a feature of a cow; Devereux, Tyler, Geertzen, &
Randall, 2013; McRae, Cree, Seidenberg, & McNorgan,
2005). Semantic features derived from large-scale property
norming studies have proven to be a useful way of
estimating a concept’s semantic content and their internal

topological structure — determined by statistical proper-
ties calculated across features, such as feature interconnect-
edness (McRae, de Sa, & Seidenberg, 1997; Moss et al.,
2007; Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976; Taylor, Devereux, Acres, Randall, & Tyler, 2012;
Tyler & Moss, 2001). As such, models based on measures
derived from semantic features might be particularly suited
to understanding the information processing demands in the
brain over time and is outlined in more detail below.

By relating feature-based models of object semantics
to MEG signals over time, it is possible to ask whether
different forms of information are reflected in neural
activity, before establishing when different forms of
information are processed. I will first show that semantic
information, based on semantic features, can be used to
successfully model neural activity over time when we
recognise objects, and that different kinds of semantic
distinctions can be made at relatively early and late
latencies. Second, how a specific cognitive model of
semantic knowledge — the conceptual structure account
(CSA; Moss et al.,, 2007; Taylor et al., 2011; Tyler &
Moss, 2001) —can be used to uncover exactly what forms
of semantic information underlie meaningful object pro-
cessing over time. The third study further shows what
kind of neural mechanisms underlie the formation of
object-specific semantic information as time elapses.

Clarke, Devereux, Randall, and Tyler (2014) defined
visual and semantic parameters for a large set of objects
based on a biologically inspired computational model of
immediate vision (the HMax model; Riesenhuber &
Poggio, 1999; Serre, Wolf, Bileschi, Riesenhuber, &
Poggio, 2007) and semantic feature information from a
property norming study (McRae et al., 2005). They started
with a stimulus model that only included visual para-
meters capturing the function of V1/V2 cells, and showed
that this model could account for MEG signals peaking
around 100 ms. Further, adding higher-level visual
information (parameters that model posterior inferior
temporal cortex) to the model significantly improved the
fit between the model and the observed MEG data
between 100 and 150 ms. Critically, adding semantic
feature information improved model fit from 190 ms —
showing that semantic information can capture important
aspects of object representations that are not accounted for
by computational models of vision alone (Figure 1a). The
semantic feature effects were seen to localise to the
anterior temporal and posterior ventral temporal lobes,
showing similar localisation of semantic feature effects for
objects to those observed in the perirhinal cortex as
measured by fMRI (Figure 1b; Clarke & Tyler, 2014).

Importantly, Clarke et al. (2014) could also ask at what
latencies are sufficient information available to distinguish
between objects from different superordinate categories
(e.g. between an animal and a tool), and between objects
from the same category (e.g. a lion vs. a tiger). They
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Figure 1. The temporal and spatial distribution of object-specific semantic feature information. (a) Model fit between the HMax model
(left) and the combined HMax and semantic feature model (centre) to the MEG data over sensors and time. Right: significant increases in
model fit are observed from 190 ms when including semantic feature information in addition to the HMax model. (b) Spatial distribution
of semantic feature effects from MEG and fMRI, showing a correspondence in the anterior temporal lobes. MEG data in ‘a’ and ‘b’
reproduced from Clarke et al. (2014), fMRI data in ‘b’ reproduced from Clarke and Tyler (2014).

found that semantic feature information could successfully
drive between-category distinctions from 110 ms, and
within-category distinctions from 150 ms. As classifica-
tion success is based on the specific predictors in the
model, this study shows the validity of using semantic
feature information to model time-varying neural repre-
sentations recorded by MEG, while showing that different
aspects of conceptual representations are processed over
time — early processing of coarse semantic information
and later processing of object-specific semantic informa-
tion. However, this study does not uncover what kind of
semantic information drives this coarse and fine-grained
semantic trajectory. To uncover the exact form of informa-
tion processing requires that we have a cognitive model of
conceptual processing that is more detailed than modelling
semantic feature content alone.

The statistical regularities between features and feature-
types have been an important influence on the development
of different cognitive models of conceptual representations.
Like many distributed accounts of conceptual knowledge,
the CSA (Moss et al., 2007; Taylor et al., 2011; Tyler &
Moss, 2001) claims that conceptual representations are
composed of distributed and interconnected feature primi-
tives, and that the statistical regularities between features
play a vital role during the activation of conceptual
knowledge (see Mahon & Caramazza, 2009; Taylor et al.,
2011 for reviews and alternative models). The unique
contribution of the CSA is in highlighting the importance

of the interaction of different feature statistics (Randall,
Moss, Rodd, Greer, & Tyler, 2004; Taylor et al., 2012) and
instantiating these processes in a neurobiological model of
object recognition (Tyler et al., 2013).

Statistical regularities derived from semantic features
provide an internal topological structure that influences the
ease and speed of activating concept-level representations,
which correlate with behavioural performance on a variety
of semantic tasks (Cree, McNorgan, & McRae, 2006;
Gonnerman, Andersen, Devlin, Kempler, & Seidenberg,
1997; McRae et al., 1997; Randall et al., 2004; Taylor et al.,
2012; Taylor, Salamoura, Randall, Moss, & Tyler, 2008).
Semantic features can occur in a variable number of
concepts, and can be loosely distinguished as being shared
by many other concepts (e.g. has ears, has legs are features
shared by many animals) or more distinctive of a particular
concept (e.g. has a hump for a camel). Concepts with many
shared features are, by definition, similar to many other
concepts and so require increased conceptual processing to
individuate them from their semantic neighbours. Further,
processing related to this shared feature information can be
informative of the objects category membership, while
having more distinctive features results in fewer similar
concepts and facilitates the activation of a unique conceptual
representation. A second feature-statistic is correlational
strength, which captures how often a concept’s features
tend to co-occur together across concepts. Greater correla-
tion between a concept’s features strengthens the links
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Figure 2. Modulation of object processing by visual and semantic feature-based statistics over time. Data show rapid visual and shared
semantic-feature effects before later effects of both shared and distinctive semantic features. Redrawn from Clarke et al. (2013).

between them, speeding their co-activation and facilitating
conceptual processing. Therefore such feature-based statist-
ics could prove key in understanding the exact form of
semantic information processed over time. It is also worth
noting that these semantic features are not proposed to be
literally encoded in neural activity, but rather they provide a
model of semantic content and a means by which to
estimate statistical regularities in semantic knowledge.

Clarke, Taylor, Devereux, Randall, and Tyler (2013)
tested for the influence of such feature-based statistics on
time-varying neural activity, again using MEG (Figure 2).
This approach revealed that semantic feature-statistics
rapidly modulated neural activity, and showed that early
signals were sensitive to the visual and semantic char-
acteristics of objects. The authors report evidence that a
specific type of semantic information is processed follow-
ing the initial visual effects. Specifically, they showed that
MEG signals increased for objects with a greater degree
of shared semantic feature information within the first
150 ms. Later, between 200 and 300 ms, neural activity
was seen to reflect processing of both shared and
distinctive feature information — shown by both increasing
MEG signals for objects with more shared feature
information and increasing MEG signals for objects with
more distinctive information. Within the same 200-300
ms time frame, Clarke et al. (2013) also observed that
MEG signals increased for objects with weakly correlated
features, reflecting increased processing for concepts
whose semantic features are relatively weakly related,
and so require increased integration demands. Thus, while
the initial semantic effects reflected the processing of
shared information, between 200 and 300 ms neural
activity was sensitive to both the shared and distinctive
aspects of a concept’s meaning, whose integration enables
coherent and specific conceptual representations.

Taken together, these two studies highlight that coarse
semantic information about objects is rapidly processed
within the first 150 ms, and is modulated by the degree of
shared feature information associated with an object. As
shared features (e.g. has legs) tend to be distributed across
many different category or domain members, the rapidly
formed representations in ventral temporal cortex may be
detailed enough for distinguishing between different types

or categories of object. Further, object-specific semantic
information is processed after approximately 150-300 ms
showing effects of both the shared and distinctive
(together object-specific) semantic features and could
drive within-category dissociations. Therefore, by using
semantic feature-based models of object semantics and
feature-based statistics, we can reveal the kinds of
semantic information processed in the brain over time
highlighting the necessity of testing cognitive measures
derived from the stimuli against neural activity.

While these two MEG studies uncover what kinds of
semantic information are processed across time, they do
not tell us about the neural mechanisms — feedforward,
feedback and recurrent — that underpin the formation of
increasingly specific conceptual representations. We have
addressed this question using MEG by contrasting neural
responses between a task requiring the recognition of the
specific object (basic-level naming) with one involving a
shallow semantic judgement (domain naming, i.e. living
vs. nonliving). Prior fMRI research points to the fact that
when recognising objects at a relatively shallow level of
semantic detail, such as deciding if the object is living or
non-living, brain activation is restricted to the posterior
parts of the ventral temporal cortex, while accessing more
fine-grained semantic representations, e.g. knowing the
picture is a tiger, activates both posterior and anterior
medial aspects of the ventral stream (Moss, Rodd,
Stamatakis, Bright, & Tyler, 2004; Tyler et al., 2004).
This research shows that brain activity is modulated by the
detail of semantic information required during recognition.
However, critical issues remain — how is the time-course
of activity in the ventral stream modulated by accessing
semantic knowledge at different levels of specificity, and
how does this modulate feedforward and recurrent inter-
actions within the ventral stream?

Clarke, Taylor, and Tyler (2011) addressed these
issues by recording MEG signals while participants
recognised the same objects in two tasks requiring
semantic knowledge at different levels of specificity.
Theoretically, identifying an object as either a living or
nonliving thing can be achieved based on information
about shared semantic features alone, without the need
to integrate the more distinctive properties into the



Language, Cognition and Neuroscience

413

Basic - Domain naming

Frequency (Hz)

I'-value

140 220 300

Time {ms)

Figure 3.

0.3 170- 258 ms
—~ 0.2
; 3
(Basic > Domain) g 0.4 \/}W \
[=2] -
S obs =
3 ‘PO ™
@
%)-0.1 100 200 300
245 Time (ms)
_; (Domain > Basic) 03

Il Occipital
Orbitofrontal

Anterior temporal
B Posterior fusiform

Recurrent interactions between the left anterior temporal and posterior fusiform increase when more specific semantic

information is required. Left: Increased phase-locking between these regions during basic (e.g. tiger) compared to domain naming (i.e.
living or nonliving). Right: increased activity in the anterior temporal lobe peaks ~200 ms and posterior fusiform peaks ~250 ms.
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emerging representation. Specific object identification
requires exactly this — integrating the shared and
distinguishing object properties, and so there is an
increase in the semantic integration demands for recog-
nition. Clarke et al. (2011) found no differences in
neural activity during the first ~150 ms of basic and
domain naming of objects, which may imply an equi-
valent early stage of processing of shared semantic
information (required for both tasks) during a predomi-
nantly feedforward stage of visual object processing.
After approximately 150 ms, increasing functional
connectivity was apparent between the left anterior
temporal and posterior fusiform regions when object-
specific semantic information was required (Figure 3).
The modulated functional connectivity during basic-
level naming coincided with enhanced activity in the
left anterior temporal lobe which was subsequently
followed by increased activity in the more posterior fusi-
form. Therefore, the timing of the effects (post ~150 ms)
and the anterior to posterior propagation of increased
amplitude supports a hypothesis whereby recurrent
processes are modulated by the relative need for more
complex semantic feature integration. This suggests that
when more specific conceptual properties are required,
increased interactions between anterior and posterior
temporal lobes act to bind together these semantic
properties into coherent conceptual representations.

The time-course of information processing during
meaningful object recognition

Broadly, object representations undergo a transition in the
first half-second, becoming increasingly fine-grained and
specific (Clarke et al., 2013; Hegdé, 2008; Hochstein &
Ahissar, 2002; Large, Kiss, & McMullen, 2004; Macé,
Joubert, Nespoulous, Fabre-Thorpe, & Herzog, 2009;
Martinovic, Gruber, Muller, & Lauwereyns, 2008; Schendan
& Ganis, 2012; Sugase, Yamane, Ueno, & Kawano, 1999).

As we saw above, this requires highly dynamic and
interactive brain mechanisms through which visual informa-
tion accumulates and cognitive operations are rapidly
resolved across multiple time scales, with a continuing
interplay between visual and cognitive factors (Humphreys
& Forde, 2001; Humphreys, Riddoch, & Quinlan, 1988).
Given the insights provided by the three previous examples,
I will turn to addressing the principle issues raised in the
beginning: how the initial perceptual information processing
states become increasingly abstract and semantic over time,
what is the nature of this semantic information and how do
semantic representations change over time.

Rapid perceptual to semantic effects

The earliest cortical signatures of visual processing are
known to arise from V1. Within 100 ms of seeing an
object, MEG and EEG studies using humans have shown
that these initial responses are modulated by the low-level
perceptual characteristics of the image (Clarke et al.,
2013; Martinovic et al., 2008; Ramkumar, Jas, Pannasch,
Hari, & Parkkonen, 2013; Scholte, Ghebreab, Waldorp,
Smeulders, & Lamme, 2009; Tarkiainen, Cornelissen, &
Salmelin, 2002), and are well modelled with computa-
tional models of V1 function (Clarke et al., 2014).
Within 150 ms, information has propagated anteriorly
along the ventral temporal cortex (Bullier, 2001; Lamme
& Roelfsema, 2000) where increasingly higher-level
visual information is processed. Intracranial recordings in
human ventral temporal cortex within this time frame
show different response profiles for objects from different
superordinate categories (Chan et al., 2011; Liu, Agam,
Madsen, & Kreiman, 2009) that also display some degree
of size and position invariance (Isik, Meyers, Leibo, &
Poggio, 2014; Liu et al., 2009). These findings converge
with EEG evidence showing categorical object distinc-
tions are present within 150 ms (Schendan, Ganis &
Kutas, 1998; Thorpe, Fize, & Marlot, 1996; VanRullen &
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Thorpe, 2001). Further, such rapidly processed categor-
ical information can drive rapid behavioural responses
(Crouzet, Kirchner, & Thorpe, 2010; Kirchner & Thorpe,
2006) presenting a challenge to our understanding of the
neural mechanisms underpinning this cognitive process.
While these studies show that higher-level visual informa-
tion has been computed, more direct evidence is provided
by Clarke et al. (2014) who, using MEG, revealed the
processing of higher-level visual properties in humans
prior to 150 ms and uncovered by the relationship
between a computational model of higher-level visual
processing and MEG signals.

Rapidly activated invariant visual responses are required
to generalise away from the specific image being viewed.
Such stimulus-abstracted visual processing may provide the
foundation of semantic activation, as understanding the
meaning of a visual image requires that stimulus independ-
ent information is processed. While the above evidence
suggests that stimulus-abstracted object information can be
accessed very rapidly, the nature of this object information,
and whether semantic information is also rapidly accessed
cannot be ascertained on this evidence.

Strong evidence that semantic information becomes
available very rapidly comes from a word-picture
interference study. Dell’Acqua et al. (2010) used EEG
to compare neural signals from semantically related
word—picture presentations with semantically unrelated
word—picture presentations, with any observed effects of
semantic relatedness depending on participants having
accessed semantic information about both the word and
the picture. They report rapid semantic effects, peaking
at 106 ms, which suggests that stimulus-independent
semantic information is accessed very rapidly, and is
consistent with models of word production that claim
conceptual knowledge is rapidly accessed (Levelt,
Praamstra, Meyer, Helenius, & Salmelin, 1998). Such
rapid semantic activation, in conjunction with higher-
level visual responses, may underpin the reliable decod-
ing of object category from MEG, EEG and intracranial
recording studies (Cichy, Pantazis & Oliva, 2014; Chan
et al,, 2011; Liu et al.,, 2009; Murphy et al., 2011;
Simanova, van Gerven, Oostenveld, & Hagoort, 2010)
and dove-tails with evidence that categorical decoding
from MEG signals is supported by semantic-feature
models over and above that which can be accounted
for by computational models of vision (Clarke
et al., 2014).

Nature of rapid semantic information

While these findings point to the rapid activation of object
semantics, and provide evidence that semantic feature
models are able to account for rapid neural activity, a more
precise characterisation of rapid semantic responses has
been provided through the use of semantic feature-based

statistics. Clarke et al. (2013) related neural activity to
particular aspects of semantic processing, derived from
feature-based statistics, and found a relationship between
early neural activity along the extent of the ventral
processing stream and the degree of shared semantic
information associated with objects. As shared features
tend to be distributed across many different category or
domain members, the rapidly formed representations in
ventral temporal cortex may be detailed enough for
distinguishing between different types or categories of
object. Further, Hauk et al. (2007) reported that neural
signals are rapidly modulated by an objects correlated
feature structure. These studies show that rapid semantic
effects seen in other studies may be underpinned by
information processing of shared and correlated semantic
object features — only uncovered using the predictions of
feature-based cognitive models of semantic knowledge.
Further, we can speculate on the mechanisms by which
this may occur. Higher-level visual information may
activate partial semantic information that experience has
associated with particular higher-level visual properties of
the image. Further, additional semantic information will
become activated if it frequently co-occurs with the
initially activated information, resulting in a wealth of
semantic information becoming active at the same time.
As co-activated features tend to represent semantic
information that regularly go together, and features that
often co-occur tend to be found in many objects from a
particular superordinate category (e.g. has eyes, has ears,
has legs will co-occur together and occur in many
animals), the initial semantic information that is activated
will provide a bias towards concepts from a particular
category but not the specific conceptual identity of the
object. The use of computational models of semantics to
simulate such processes, before testing the outputs of the
model against the observed neural activity may provide a
mechanism by which such predictions may be tested.
More broadly, the evidence discussed here allows us to
claim that the initial transition from purely perceptual to
coarse semantic processing begins very rapidly, and emerges
as neural activity automatically propagates along the ventral
temporal cortex. Further, this rapid activation of semantic
information can underpin rapid categorical behaviours, but
not concept-specific identification. The notion that rapidly
activated object information supports coarse semantic
representations that are built off the back of higher-level
visual representations is also suggested in other models of
the time-course of object recognition (Humphreys & Forde
2001; Schendan & Ganis, 2012). For example, the hier-
archical interactive theory (Humphreys & Forde, 2001)
claims that following the initial visual processing of an
object, there is a cascade-like sequence of processing where
the initial perceptual processing rapidly activates (some)
semantic information associated with the object. The
rapidly activated semantic information (including non-visual
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information) then continues to interact with the ongoing
perceptual processes. What we have described above adds
additional details such as the timings of rapid semantic
effects while crucially also uncovering the type of semantic
information processed.

How do semantic representations change over time:
object-specific semantic effects and the anterior medial
temporal lobe

After ~150 ms, conceptual object representations become
increasingly specific and fine-grained, with this temporal
progression of conceptual specificity also observed in
behavioural studies (Fei-Fei, Iyer, Koch, & Perona, 2007;
Mace et al., 2009; Mack, Gauthier, Sadr, & Palmeri,
2008). Using MEG we have shown that neural activity
increased after 150 ms when participants named objects at
a specific level compared to a general category level
(Clarke et al., 2011), and that specific objects from the
same superordiante category can be successfully distin-
guished by a model of the MEG signals based on semantic
features (Clarke et al., 2014). These findings are in line
with other studies showing that concept-level information
is represented and processed beyond 150-200 ms (Low
et al., 2003; Martinovic et al., 2008; Schendan & Mabher,
2009). The timing of these object-specific effects suggests
that the formation of detailed semantic representations is
not accomplished within the timeframe of the initial
propagation of signals along the ventral temporal cortex,
but is dependent on more dynamic recurrent processing
mechanisms.

A key region implicated in the formation of specific-
conceptual representations is the perirhinal cortex within the
anterior medial temporal lobes (Clarke & Tyler, 2014; Moss
et al., 2004; Tyler et al., 2013, 2004). The perirhinal cortex
is claimed to code for complex conjunctions of simpler
information in posterior ventral temporal regions (Barense
et al., 2012; Buckley, Booth, Rolls, & Gaffan, 2001; Bussey
& Saksida, 2002; Murray & Richmond, 2001), and may
code the computations necessary for object-specific se-
mantic representations to be formed (also see Damasio,
1989; Meyer & Damasio, 2009; Rogers & Patterson, 2007
Simmons & Barsalou, 2003). This hypothesis is supported
by human fMRI research showing that activity in the region
is sensitive to both object-specific semantic content (Clarke
& Tyler, 2014) and feature-based statistics capturing
semantic feature integration (Tyler et al., 2013), in addition
to the integration of complex semantic information (Bare-
nse, Rogers, Bussey, Saksida, & Graham, 2010; Kivisaari,
Tyler, Monsch, & Taylor, 2012; Moss et al., 2004; Tyler
et al, 2004; Taylor, Moss, Stamatakis, & Tyler, 2006;
Taylor, Stamatakis, & Tyler, 2009).

Using MEG, it has been observed that the anterior
temporal lobes' are sensitive to object-specific semantics
beyond 150 ms, along with anterior and posterior

interactions within the temporal lobe (Campo et al., 2013;
Clarke et al., 2011; Clarke et al., 2014; Urooj et al., 2014)
that may underpin the formation of specific semantic
representations (requiring the integration of distinctive
feature information into the established categorical con-
text). Widespread damage to the anterior temporal lobe is
associated with impairments in accessing specific semantic
knowledge (Mion et al., 2010; Rogers & Patterson, 2007).
Further, atrophy in the anterior temporal lobes is associated
with reduced activation in the posterior ventral temporal
cortex during semantic decisions (Mummery et al., 1999),
while lesions to the rhinal cortex (perirhinal and entorhinal)
and temporal pole results in reduced backwards connectiv-
ity from the anterior temporal lobe to the posterior ventral
stream during object recognition (Campo et al., 2013).
Overall, these studies strongly support the fundamental role
of the perirhinal cortex, within the anterior temporal lobes,
in the formation of object-specific semantic representations
through processing conjunctions of coarser information
represented in the posterior fusiform. Further, such object-
specific semantic information is integrated through recur-
rent connectivity between posterior and anterior sites in the
ventral stream with such processes beginning after approxi-
mately 150-200 ms.

In terms of activating concept-specific semantic infor-
mation, we can speculate that after the initial phase where
many semantic features become activated (providing a
strong category bias but not clear information for object-
specific representations), the perirhinal cortex’s role is to
bind and integrate the conceptual features that will form a
coherent and specific conceptual representation. Integrating
semantic features, and especially the most weakly corre-
lated distinctive features, is critical for disambiguating
between otherwise similar conceptual representations
(Randall et al., 2004; Tyler et al., 2013). Further, MEG
evidence of the conjoint processing of shared and distinct-
ive features along with weakly correlated features between
200 and 300 ms (Clarke et al., 2013) shows that informa-
tion processing during this time frame is sensitive to the
conceptual properties of objects that are required for
specific representations to be formed.

Discussion

The above account is concerned with explaining the kinds
of cognitive and functionally relevant information that is
processed when recognising meaningful visual objects. In
particular, it is primarily concerned with how the initial
sensory signals undergo a series of information processing
states to establish a specific conceptual representation.
One key finding is that semantic information about objects
is rapidly activated, and that early signatures of semantic
information can drive coarse, superordinate categorical,
judgements about objects. Further, rapid semantic pro-
cesses (and behaviours) are underpinned by shared feature
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information. Post ~150 ms, a more dynamic, interactive,
phase of processing begins that underpins the formation
of more specific concept-level representations. This is
dependent on the integration of semantic information,
particularly the integration of distinctive information into
the prior categorical context, and is underpinned by
interactions between the anterior temporal lobe, specific-
ally the perirhinal cortex, and the posterior fusiform.

Our research shows clear evidence that semantic
information plays a key role during the temporal formation
of object representations. Further, we suggest that unique
conceptual representations are not established within an
initial feedforward sweep of processing along the temporal
lobes but depend on recurrent interactions within the
ventral stream. Such a progression of semantic information
processing over time need not imply discrete stages of
initial category representations and subsequent object-
specific semantic representations, but can be formulated in
terms of different kinds of information emerging and
accumulating over time (Mack & Palmeri, 2011).

Previous MEG and EEG research has been able to
indentify time frames, neural regions and oscillatory
dynamics associated with semantic processing of objects.
The multistate interactive (MUSI) account of object cogni-
tion (Schendan & Ganis, 2012; Schendan & Maher, 2009;
Schendan & Stern, 2008) proposes that perceptual categor-
isation occurs between 100 and 150 ms and precede
concept-level semantic processing that is driven by recur-
rent interactions between frontal, temporal and parietal
regions. While the current account shares many aspects
with the MUSI account, the critical advance we make, by
combining quantifiable accounts of object semantics with
MEG signals, is to explicitly relate different types of
semantic information to time-varying neural signals and
track the progression of semantic information processing
over time. Uncovering such information processing states
would not be possible without a detailed model of object
semantics that incorporates information about an objects
semantic content and the statistical regularities in the co-
activation of semantic information.

The account described here shows that detailed se-
mantic representations can be formed within 300 ms, and
that are sufficiently specific to support the unique identi-
fication of the object. The N400, an electrophysiological
signature beginning around 200/300 ms and peaking after
400 ms, is widely seen as a marker of the integration and
access of semantic memory (for review see Kutas &
Federmeier, 2011). Here, we reviewed evidence for
concept-specific semantic integration with a similar onset
to that of N400 effects, but crucially our data show that
specific forms of semantic information are rapidly
accessed prior to effects within the N400 time range.
Here we have shown that there are important rapid
semantic effects that can in turn constrain models of
subsequent effects that may include N400-like processes,

the resolution of lexical and phonological processes
(Indefrey & Levelt, 2004; Levelt et al., 1998), and word
selection and production (Ri¢s, Janssen, Burle, & Alario,
2013). This is not to claim that these cognitive operations
can only begin after the completion of conceptual
processes, but likely begin prior to completion of preced-
ing phases as suggested by cascaded models of recogni-
tion (Hauk, Davis, Ford, Pulvermuller, & Marslen-Wilson,
2006; Humphreys & Forde, 2001). Understanding the first
few hundred milliseconds of information processing
provides a crucial platform for understanding subsequent
effects which can only be fully understood once there is
an account of the preceding phases of processing.

While beginning to unravel the information processing
states associated with transitions and early interplays
between perception and semantics, many important aspects
of meaningful object recognition remain unclear — such as
the role of network connectivity in information transitions
and the functional role of different oscillatory frequencies.
Further, what are the contributions of a wider network of
regions engaged during object recognition — including
interactions with the frontal lobe. Bar and colleagues (Bar
et al., 2006; Ghuman, Bar, Dobbins, & Schnyer, 2008)
have shown early frontal — temporal interactions during
object recognition and processing contextual associations,
which may form parallel interactive processing streams
together with those described here in the service of
semantic memory (also see Schendan & Stern, 2008).

In conclusion, the extraction of meaningful information
from visual objects relies on a dynamic sequence of neural
activity and regional inter-activity. The semantic repres-
entation of an object emerges from a relatively coarse state,
supporting broad discriminations between different types
of things, to a fine-grained semantically rich integrated
representation. This evolution of meaning from a perceptual
to conceptual form relies on feedforward and recurrent
processing mechanisms, along with the dynamic interac-
tions between brain regions supporting object recognition.
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Note

1. While human fMRI studies indicate the perirthinal cortex
underlies object-specific conceptual processing, MEG does
not provide the spatial resolution to accurately make inferences
about the specific anatomical structure within the anterior
temporal lobes the effects originate from. Therefore, we
interpret our MEG effects at the level of the anterior temporal
lobe and rely on techniques with increased spatial specificity to
more accurately constrain our regional hypotheses.
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