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Abstract

Analysis has been made of the amplitudes of the second and third harmonics when

pumping a discrete frequency ω to the Josephson-vortex photonic crystal within the

THz range of the electromagnetic spectrum. The results of numerical simulations

show that there are certain resonance frequencies for these harmonics where the

amplitudes are strongly enhanced. The frequencies at which these resonances occur

can be tuned by an applied magnetic field hab and tilting the material with respect

to the incident radiation. For the second harmonic it has been possible to describe

these resonances analytically with a resonance approximation which displays good

agreement with numerical simulations at and near the resonances.

A similar perturbative method has been used to simulate the nonlinear mixing

of two discrete THz frequencies ω1 and ω2 in the JV photonic crystal, producing

resonances for harmonics at the sum ω1 + ω2 and the difference ω1 − ω2 of these

two input frequencies. This method can allow a high degree of control over the

harmonic frequencies produced.
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Chapter 1

Introduction

1.1 The THz gap

The THz frequency range of the electromagnetic spectrum remains the only real

region between long wavelength radio waves and short wavelength gamma rays

that isn’t widely employed in technologies by humankind [1]. The THz gap lies

between frequencies of around 0.3-30THz which as a wavelength corresponds to 10-

1000µm or a photon energy of 1.25-125meV. As a blackbody colour temperature,

THz frequencies range from 14-1400K which importantly includes the temperature

range of biological processes and a substantial fraction of the background radiation

from the birth of the universe. There are many potential applications for devices

that operate at THz frequencies in fields as wide ranging as physics, astronomy,

chemistry, biology and medicine [1]. This has led to a rising interest in THz science

and technology in order to bridge this gap and open up applications such as THz

imaging and spectroscopy, health monitoring, medical diagnosis and tomography

[2]. Unlike some other forms of radiation such as X-rays, THz frequencies aren’t
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believed to be damaging to the human body since photon energies are too low for

photoionization of biological material [3]. Fig. 1.1 shows the position of the THz

gap in the electromagnetic spectrum between microwave and infra red frequencies.

Figure 1.1: Showing the position of the THz gap in the Electromagnetic spectrum
as well as some example industries that use different frequencies, figure has been
adapted from [2].

There are several optical and electronic (microwave) THz devices currently com-

peting for the THz market [1, 4]. Optical devices can employ several approaches

to reduce their frequency. On the other hand, the frequency of microwave devices

(usually electronic devices based on semiconductors) has to be increased in order to

reach the THz range. Recent advances in nanotechnology have led to the develop-

ment of electronic THz sources including THz-quantum cascade lasers [5], resonant

tunneling diodes [6, 7], THz plasma-wave photomixers [8], and Bloch oscillators

[9]. Several types of THz detectors for time-domain systems have been proposed

so far, e.g. (i) GaAs used as a photoconductive antenna [10]; (ii) electro-optic sam-

pling techniques for ultrawideband time-domain detection [11]; (iii) a 10-fs-laser
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and a thin nonlinear crystal such as GaSe [12]; (iv) deuterated triglycine sulphate

crystals [13]; (v) bolometers [14]; (vi) single-electron transistors [15]. THz wave

guiding using conventional structures [16], such as metal tubes, plastic ribbons [17]

and dielectric fibres has also been demonstrated but due to high losses, some of

these devices have limited applications.

1.2 Josephson THz devices : the aims of this

thesis

A variety of THz sources, detectors, and waveguides have been proposed and even

developed, but despite this there is still a demand for more highly controllable,

well-integrated and compact THz devices. Some of the devices mentioned above

have problems for applications in miniaturized electronics, they are either too

large, not easily assembled together or not frequency tunable. Superconducting

devices employing the Josephson effect [18] can now be considered as a prominent

candidate to make single chip multi-functional THz devices. Indeed, the growing

number of studies [19] of Josephson structures is partly motivated by the THz

frequency range of the electromagnetic waves, also known as Josephson plasma

waves (JPWs) propagating in these systems [20]. These THz electromagnetic waves

interact nonlinearly with the Josephson medium itself and with magnetic flux

quanta (Josephson vortices), which, in turn, can be conveniently manipulated by

varying an in-plane magnetic field and/or an out-of-plane electric current. Such a

level of controllability can be used to propose a set of well-integrated classical and

even quantum THz devices [19], including pulse and continuous wave generators,
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tunable filters, detectors, wave mixers, lenses, converters, and amplifiers.

In this PhD project the focus has been on basic and advanced mechanisms of fil-

tering THz radiation using nonlinear photonic crystals made of layered supercon-

ductors where an applied magnetic field can be used to tune the distance between

vortices, hence changing the period of the structure. This important property

allows layered superconductors to be switched from fully transparent to fully re-

flecting for a particular frequency of THz radiation by changing the strength of an

applied magnetic field [21]. Thus, the system studied in this project is a tunable

filter for THz radiation known as the Josephson-vortex (JV) terahertz photonic

crystal , focussing on the nonlinear properties which could have wide application

in compact THz devices.
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Chapter 2

Review : THz radiation in layered

superconductors

It’s now appropriate to review some of the published literature on layered super-

conductors and their interactions with electromagnetic radiation. An important

principle affecting the properties of these materials is the Josephson effect [22, 23],

which occurs when two superconductors are separated by an insulating barrier.

This effect will be reviewed in Section 2.1. These principles, along with Maxwell’s

equations [24] will be used to derive the sine-Gordon equation [25] in Section 2.1.1

that can describe the evolution of fields in layered superconductors, these equa-

tions will be the basis for all subsequent work in this thesis. The relevant solutions

to these equations are discussed in Section 2.1.2.

Since this work considers a photonic crystal for THz radiation it makes sense to

review the basic properties of photonic crystals [26], this is covered in Chapter 3

whilst some applications of photonic crystals are outlined in Section 3.1. The im-

plications of nonlinearity in a photonic crystal are discussed in Section 3.2. Finally
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this is all brought together in Section 3.3, which discusses the linear properties of

the Josephson-vortex terahertz photonic crystal, which has been previously inves-

tigated [27]. This work has been the basis for the core research of this thesis, which

is considering the nonlinear properties of the JV photonic crystal.

2.1 Josephson junctions and electromagnetic ra-

diation

A macroscopic system in a superconducting state can be described by a single

wavefunction ψ = |ψ|eiθ [28]. When two superconductors are in close proximity to

each other, Cooper pairs can tunnel through the barrier in between, which makes

the two subsystems intervene with each other [29]. The gauge-invariant phase

difference ϕ = θa − θb − 2π
φ0

∫ b
a
~A.d~s is important for describing superconductivity

where A is the vector potential, φ0 = hc
2e

is the flux quantum, h is the Plank

constant, c the speed of light and e the charge on the electron.

In 1962 Brian Josephson predicted [22, 23, 30] that the current flow associated

with coherent quantum tunnelling of Cooper pairs through a barrier between two

superconducting electrodes, known as a Josephson junction, is proportional to the

sinusoidal function of the phase difference ϕ. This is known as the dc Josephson

relation. He also predicted that the time derivative of the phase difference is

proportional to the voltage across the barrier, known as the ac Josephson relation.
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The current flow between the two superconductors can be described by the dc

Josephson relation given by

J = Jc sinϕ, (2.1)

where Jc is the critical current density, which is the maximum current allowed

through a Josephson junction. When a voltage V is applied across the barrier, the

phase difference evolves with time following the ac Josephson relation

2eV = ~
dϕ

dt
. (2.2)

Here ~ = h/2π is the reduced Plank constant. Josephson junctions can come in

different arrangements or geometries which have different physical properties, the

one relevant to this work is called the long Josephson junction [31] as shown in

Fig. 2.1. In this case the width of the junction is much greater than the so called

Josephson penetration depth λJ . This is the depth to which a magnetic field can

penetrate a long Josephson junction and is greater than the London penetration

depth λL for bulk superconductors.

2.1.1 Derivation of the sine-Gordon equation for Joseph-

son junctions

In this section the basic derivation of the sine-Gordon equation for a single Joseph-

son junction will be shown following the review [28].

The Josephson relations defined in Section 2.1 impose rules for the spatial and

temporal variations of the gauge-invariant phase difference (and, thus, the voltage
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Figure 2.1: Geometry of a long Josephson junction with two superconductors
separated by an insulating barrier, where the Josephson penetration depth λJ is
much larger than the London penetration depth λL as indicated by the dashed
blue line. Figure adapted from [31].

and current in a Josephson junction), since the electric and magnetic fields them-

selves follow Maxwell’s equations. The spatial variation of gauge-invariant phase

difference across a Josephson junction with separation d along the z direction is

given by

5ϕ =
2π(2λ+ d)

φ0

B × ẑ,

where 5 =
(
∂
∂x
, ∂
∂y

)
is the gradient operator in lateral directions, λ is the London

penetration depth for an isotropic superconductor and ẑ is the unit vector along

the z-axis. Using both Maxwell’s equation

5× ~B =
4π

c
~J +

ε

c

∂ ~E

∂t
,

and the current Jz = sinϕ+σV/d, where the first term is given by the dc Josephson
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current and the second term the quasiparticle current with conductivity σ and

voltage V. The sine-Gordon equation can be derived, given by Eq. (2.3)

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+

1

c′2
∂2ϕ

∂t2
− β

′

c′2
∂ϕ

∂t
=

1

λ2J
sinϕ (2.3)

c
′

= c√
ε(1+2λ/d)

is the Swihart velocity(the characteristic maximum velocity for

electromagnetic waves in a long Josephson junction), λJ =
√
cφo/(8π2Jc(d+ 2λ))

the Josephson penetration depth, β
′
= 4πσ/ε. The sine-Gordon equation describes

the spatial and temporal evolution of the gauge-invariant phase difference in a

Josephson junction.

Neglecting damping and the y dependence of the Josephson phase we can write the

sine-Gordon equation (Eq. (2.4)) for a single Josephson junction in the following

general form which will be more applicable to the particular problem considered

in this thesis

(
1

c′2
∂2ϕ

∂t2
+

1

λ2J
sinϕ)− ∂2ϕ

∂x2
= 0. (2.4)

The motivation for these assumptions will be described in more detail when the

sine-Gordon equations for layered superconductors are derived in later chapters.
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2.1.2 Solutions of the sine-Gordon equation

The sine-Gordon equation allows two types of solutions, the first is a soliton solu-

tion representing Josephson vortices (JVs) , given by

ϕ = 4 arctan[exp(x− vt/1− v2/(c′2)1/2)]. (2.5)

The physical interpretation of the soliton solutions can be described as follows. In a

bulk type-I superconductor the superconducting phase only persists up to a critical

applied magnetic field Hc. Above this field strength the Cooper pairs and hence the

superconductivity are broken allowing the field to penetrate the material. Type-

II superconductors have more complex behaviour, and can also display a vortex

state, or mixed state of superconducting and normal phase, where the applied field

can penetrate the material in the form of vortices. Abrikosov vortices [32] have

a normal (normally conducting) core surrounded by a circulating supercurrrent,

typically the magnetic flux of a vortex is equal to the flux quantum φ0.

In a Josephson junction the so-called Josephson vortices [33] can penetrate the ma-

terial between the superconducting layers when a magnetic field is applied parallel

to the layers. Unlike Abrikosov vortices, Josephson vortices have no normal core

since the field penetrates the insulating barrier, instead supercurrents circulate

around the mathematical center of the vortex.

The second solution to Eq. (2.4) is an oscillating solution representing Josephson

plasma waves (JPWs) propagating in a Josephson junction which is given by

ϕ = ϕ0 exp(iqx− iωt+ k(q, ω)y), (2.6)
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where k is the x-axis wavevector and q the y-axis wavevector of the waves with an-

gular frequency ω and amplitude ϕ0. It will be shown in Section 3.3 that Josephson

vortices can play a useful role in controlling JPWs.

2.1.3 Linear spectrum of Josephson plasma waves

The transverse linear spectrum ω(k) of Josephson plasma waves can be written as

Eq. (2.7) and is plotted in Fig. 2.2

ω2 = ω2
J + c

′2k2. (2.7)

Layered superconductors have a plasma frequency ωJ , waves below this frequency

cannot propagate as they are screened out by the Josephson plasma [34]. This

is in analogy with the plasma frequency in metals where low frequency radiation

is screened by electrons [35]. Typical values for ωJ in layered superconductors

are in the range of 0.1-0.5THz and are dependent on the critical current density

of the material. This demonstrates what is an important property of layered

superconductors, that they allow the propagation of THz frequency waves.

The Josephson effect also causes many unique, highly nonlinear phenomena. For

example, when a Josephson junction is irradiated by microwaves, the current-

voltage (IV) characteristics display a series of equally spaced plateaus of constant

voltage called Shapiro steps [36, 37] at specific values of dc bias voltage. Since

the separation of voltages is given by ωh/2e with ω the angular frequency of the

microwave, the Shapiro steps are used as a voltage standard [38] or can be also

employed to detect THz radiation [39]. In the opposite case, the Josephson effect

provides a way to excite high frequency electromagnetic (EM) waves [22, 23, 40],
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Figure 2.2: Plasma modes in a single Josephson junction. The longitudinal mode
represents a fixed field at a frequency ωJ , transverse modes represent propagating
Josephson plasma waves [28]. c©IOP Publishing. Reproduced by permission of
IOP Publishing. All rights reserved.

which was first confirmed in single junctions [18], and later in Josephson junction

arrays [19].

Since the discovery of the cuprate high-Tc superconductors having layered struc-

ture [41], and the demonstration of the intrinsic Josephson effect in BSCCO [42],

the effort to explore a strong EM source based on the nanoscale, built-in Joseph-

son junctions has been accelerated [43, 44]. These so-called intrinsic Josephson

junctions (IJJs) have obvious advantages superior to the artificial ones since the

former are homogeneous at the atomic scale guaranteed by the high quality of
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single crystals, and the superconducting gap is large, typically tens of MeV, which

allows the frequency to cover the whole range of the terahertz range. An experi-

mental challenge was to synchronize a stack of N IJJs to achieve a condition called

super-radiance in which the radiation intensity increases proportional to N2. This

is compared with the weak increase of radiation from non-synchronized junctions

which is proportional to N .

In 2007 an important experimental breakthrough was achieved when a substrate

of a single crystal of the layered superconductor BSSCO was used to emit coherent

THz super-radiance at up to 0.85THz and a power of around 0.5µW [45]. This was

achieved by applying a c-axis bias voltage to a rectangular mesa mounted on top of

the crystal with no applied magnetic field. The strong EM emission takes place at

the bias voltage when the frequency determined by the ac Josephson relation equals

the fundamental cavity mode, corresponding to a half-wavelength of the Josephson

plasma in the mesa [45]. These experimental observations cannot be understood

by the conventional understanding on Josephson phenomena developed mainly

based on single Josephson junctions, since the known cavity modes associated

with a finite external magnetic fields are clearly irrelevant and solitons, which can

be excited in the absence of an external magnetic field and correspond to cavity

modes, cannot be stacked uniformly in the c axis to achieve in-phase dynamics

in all the junctions. It is also not clear why it is possible to synchronize the

superconductivity phase differences of a total of about 600 junctions. Motivated by

recent experiments [46, 47], theoretical investigations on the sine-Gordon equations

for the IJJs have been carried out with special focus on the case of strong inductive

coupling originating in the extremely small junction spacing of s = 1.5nm as

compared to the London penetration depth λab = 400nm.
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Figure 2.3: A) Schematic of BSSCO mesa for coherent emission of THz waves
(red) B) SEM image of the mesa. Also shown are schematics of C) Out of phase
mode and D) In phase mode, where the blue layers are CuO2 and the yellow layers
Bi-Sr-O. Red lines represent the electric field in each layer which for the in phase
case sums up to a larger coherent wave (black dashed line). From [45], reprinted
with permission from AAAS.

As well as the attempts to develop powerful THz emitters based on high-Tc lay-

ered superconductors, further research indicates that other THz devices can be

fabricated based on these same materials. This opens up the possibility [19] of

designing a well integrated set of THz devices using layered superconductors. A

few of them are briefly outlined below.

Filters: Tuneable THz filters have been recently proposed [21, 27, 48] that use the

Josephson vortex lattice as a tunable photonic crystal. Since the JV lattice is a
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periodic array that scatters electromagnetic waves in the THz frequency range. It

was shown that JV lattices can produce a controllable photonic band gap structure

(THz photonic crystal) with easily tunable forbidden zones controlled by the in-

plane magnetic field. The scattering of electromagnetic waves by JVs results in a

strong magnetic-field dependence of the reflection and transparency.

Detectors: It was theoretically proven [49, 50] that surface Josephson plasma waves

could propagate along the superconductor-vacuum interface with a frequency below

the Josephson plasma frequency. This effect could be used for the development of

frequency-sensitive bolometers using idea that an incident THz wave can resonantly

excite these surface waves for certain angles of the incident wave with the sample

surface (see Fig. 2.4). This results in a strong increase of the absorption of the

THz wave in the sample and in a resonant peak of the sample resistance which

can be measured. The position of this peak allows one to detect the frequency and

direction of the incident THz wave.

Nonlinear THz devices: The effects of nonlinearity [51, 52] on the propagation of

THz waves through layered superconductors has also been studied. It was ana-

lytically derived that (a) localized THz beam can propagate in layered supercon-

ductors for frequencies slightly below plasma frequency and (b) resonances related

to standing waves can be abruptly destroyed above a certain energy threshold.

These could be potentially useful for THz lenses, amplifiers, and continuous/pulse

radiation converters.

Metamaterials: Materials which can be artificially fabricated to have physical prop-

erties not found in nature are known as metamaterials [53]. Recently proposals
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Figure 2.4: Schematic diagram of the excitation of surface JPWs (green wave) due
to an incident THz wave (solid red line) at angle θ0 to a layered superconductor.
Also visible are the reflected wave (solid blue line) and damped wave (orange wave)
within the superconductor [49]. Figure has been adapted from [49].

have been made [54, 55] for using layered superconductors as negative-refractive-

index metamaterials which can offer sub wavelength resolution and aberration free

imaging.
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Chapter 3

Review : Photonic crystals

Photonic crystals [26, 56, 57] are composite materials in which the building blocks

of the crystal unit cell are dielectric media. In photonic crystals there is a periodic

spatial variation in the index of refraction, where the period is given by the size

of the unit cell. The dimension of the photonic crystal is given by the number of

independent spatial directions along which the variation of refractive index occurs.

Example models for a one-, two- and three-dimensional photonic crystal have been

depicted in Fig. 3.1.

An electromagnetic field incident upon a photonic crystal will be reflected period-

ically inside the medium at the boundaries between regions of different refractive

index, the reflectance of each unit cell will increase when there is a higher contrast

between the refractive indices of the constituent materials. When, for applied

harmonic plane waves that propagate in a given direction, the wavelength and

the crystal period along the propagation direction compare such that the back-

reflected waves interfere constructively, the field will be strongly rejected from the

crystal. In this case, the amplitude of the field within the crystal decays exponen-
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Figure 3.1: Photonic crystals with periodicity in a) One dimension b) Two dimen-
sions and c) Three dimensions, where the building blocks (represented by white
and blue) are materials with different dielectric properties. Figure adapted from
[56].

tially with the distance to the boundary surface of the medium hence there will

be no travelling wave of this field within the medium. The range of wavelengths

or, equivalently, frequencies, for which no propagating wave solutions exist in the

crystal is called the photonic band gap. If the photonic band gap extends to all

possible propagation directions of the field, it is called a complete gap [26].

The opposite case of field rejection from the crystal occurs when the wavelength and

crystal period along the propagation direction of the incident harmonic plane waves

compare such that the back-reflected waves from unit cells interfere destructively.

In that case, the field will be well-transmitted through the crystal. Depending

on the wave-vector of an incoming electromagnetic wave, a photonic crystal can

exhibit either high transmission and high reflection coefficients.

Fig. 3.2 depicts a sketch of the dispersion relation for electromagnetic harmonic

plane waves in a uniform one-dimensional homogeneous medium and in a one-

dimensional photonic crystal. The effects of the inhomogeneities of the medium

18



Figure 3.2: For materials with a constant permittivity ε the dispersion relation is
continuous as shown in a) but as some periodicity in ε is introduced a band gap in
the spectrum opens up as shown in b. Figure adapted from [56].

are seen in a splitting of the bands, the frequency solutions that correspond to the

real wave number k, at the edges of the Brillouin zone at k = ±π/l, resulting in

the photonic band gap.

Due to such a band-gap structure of the light spectra, electromagnetic waves in

photonic crystals have a strong analogy in the field of solid state physics. This

similarity is given by electrons in interaction with a crystal lattice of atoms or

molecules, where the crystal represents a periodic potential for the electrons. An

electronic band gap results if the electrons are Bragg diffracted [58]. The charge

configuration of the atoms or molecules and the structure of the crystal together

determine the conduction properties of the medium. In photonic crystals, the index
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of refraction of the material components and the crystal structure both determine

the dispersion of light. The differences are that the electromagnetic wave has a

polarization and satisfies the Maxwell equations whereas the electron wave is a

scalar field that obeys Schrödinger’s equation [59].

The main properties of 1D linear photonic crystals can be summarized as follows

[60]:

• A photonic band gap characterized by an inhibited region in the transmission

spectrum.

• Oscillations in the transmission spectrum whose number is given by the num-

ber of periods N of the structure.

• Dependence of the band gap on the building criteria of the crystal.

• Inside the structure the electric field is distributed in a selective way.

The unusual dispersion relation of electromagnetic waves in photonic crystals and

in particular the possible presence of a photonic band gap render photonic crys-

tals useful for manipulating the propagation of light. A legitimate question that

could arise at this point is: why use such complex materials as photonic crystals

and why not simply use the reflective properties of metals or the phenomenon of

total internal reflection in dielectrics to control the propagation of light? Photonic

crystals also offer added advantages over these other systems since they are much

less dissipative than metal mirrors for the control of electromagnetic waves [61],

so energy losses are reduced. Also, as compared to total internal reflection based
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Figure 3.3: Typical transmittance against wavelength for a 1D photonic crystal,
figure taken from [60]. c©IOP Publishing. Reproduced by permission of IOP
Publishing. All rights reserved.

waveguides such as for instance glass fibre cables, photonic crystals can manipu-

late the flow of light at a much smaller scale, namely that of the wavelength of the

guided light itself [56].

3.1 Applications of photonic crystals

There are numerous applications of photonic crystals, the simplest being a filter for

specific frequencies within the photonic band gap [62]. In 1994, Meade et al. [63]

first proposed using them as waveguides. A waveguide is obtained from a photonic

crystal by introducing a line of defects in it. Since the light cannot continue to
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propagate in the perfect part of the crystal, it is forced to follow the defect route

along which the periodicity is broken, even if this line has sharp bends. Although

the light does not escape the photonic crystal waveguide at bends, part of the

light undergoes backward reflection there, which also results in transmission loss.

Much effort has been spent to reduce these back-reflection losses, for instance by

rearranging the lattice near the bend [64], smoothing the bend and changing locally

the width of the guide [65] and adding appropriate defects at the bend corners [66].

Confinement of the light to the waveguide that is independent of the shape of the

guide can not be achieved in waveguides that are based on total internal reflection,

where there exists a minimal bend radius below which the light escapes from the

waveguide. For the guiding of for instance telecom waves (wavelength 1.5µm in

vacuum [56]) in a glass fibre cable surrounded by air, the bend radius, which is

the outer radius of the circularly bent cable, should be at least a few millimetres.

As compared to a photonic crystal waveguide, which has extensions of the order

of the wavelength of the guided light, this is a significant difference in size. This

explains why photonic crystals can manipulate the flow of light at small scale.

If instead of a line of defects, only a single point defect is introduced in the photonic

crystal, as Yablonovitch and Gmitter [67] first proposed in 1991, local electromag-

netic modes can exist with frequencies that lie within the photonic band gap. Thus,

photonic crystals can be used as microcavities, which are essential components of

lasers and filters. For good performance, it is required that the cavity has a high

quality factor, meaning a low energy loss per radiation cycle which implies having

a well-defined frequency and a small mode amplitude, ensuring high coherence.

Since these local electromagnetic modes can be confined with low loss, the quality

factor of such a cavity can reach high values of over ten thousand [68]. Moreover,
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the size of the cavity can be brought down to the order of the wavelength, which

implies a rather small mode volume for the cavity. Various methods have been

proposed to further increase the quality factor and decrease the mode volume, as

for instance by adjusting the cavity geometry [69] and recycling the radiated field

[70, 71]. The first working pulsed laser based on a photonic crystal microcavity

was reported in 1999 by Lee et al. [72].

Further proposed photonic crystal applications are beam splitters [73], add/drop

filters [74], switches [75, 76], waveguide branches [77], transistors [78], limiters

[79, 80], modulators [81, 82], amplifiers [83, 84] and optical delay lines [85]. Many

photonic crystal applications have been realized with good performance such as

the drop filter [86], optical filter [74], polarization splitter [87], Y-splitter [88, 89]

and Mach-Zehnder interferometer [90].

3.2 Nonlinear effects in photonic crystals

Nonlinear optics [91] is the study of phenomena that occur as a consequence of

the modification of the optical properties of a material system by the presence

of light. Typically, only laser light has sufficient intensity to modify the optical

properties of a material. Shortly after the demonstration of the first working laser

in 1960 came the discovery of second harmonic generation by Franken et al. in

1961 [92], which is considered the start of the field of nonlinear optics . Nonlinear

optical phenomena are ’nonlinear’ in the sense that they occur in the response of

a material system to an applied electromagnetic field. Consequently the intensity

of the light generated at the second harmonic frequency tends to increase as the

square of the intensity of the applied laser light.
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In order to describe more precisely what is meant by an optical nonlinearity we can

consider how the polarization P̃ (t) of a material system (the dipole moment per

unit volume), depends upon the strength of an applied electric field Ẽ(t). In the

case of conventional linear optics, the induced polarization depends linearly upon

the electric field strength in a manner that can often be described in Gaussian

units by

P̃ (t) = χ(1)Ẽ(t), (3.1)

where the constant of proportionality χ(1) is known as the linear susceptibility. In

nonlinear optics, the optical response can often be described by generalizing Eq.

(3.1) by expressing the polarization as a power series in the field strength as in Eq.

(3.2) which shows the series up to third order.

P̃ (t) = χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + ... (3.2)

The quantities χ(2) and χ(3) respectively are known as the second and third order

nonlinear optical susceptibilities.

The most common procedure for describing nonlinear optical phenomena is based

on expressing the polarization P̃ (t) in terms of the applied electric field strength

Ẽ(t), as we have done in Eq. (3.2). The reason why the polarization plays a

key role in the description of nonlinear optical phenomena is that a time-varying

polarization can act as the source of new components of the electromagnetic field.

For example, the wave equation in nonlinear optical media often has the form given

in Eq. (3.3).
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52E − n2

c2
∂2E

∂t2
=

4π

c2
∂2P̃NL

∂t2
, (3.3)

where n is the usual linear refractive index and c is the speed of light in a vacuum.

We can interpret Eq. (3.3) as a nonlinear wave equation in which the polarization

P̃NL associated with the nonlinear response drives the electric field Ẽ.

As an example of a nonlinear optical interaction, we can consider the process of

second harmonic generation. This is appropriate since second harmonic generation

will be analyzed in Chapter 4 for the JV photonic crystal. Here we can consider a

laser beam of frequency ω whose electric field strength is represented by Eq. (3.4),

incident upon a crystal for which the second-order susceptibility χ(2) is nonzero.

Ẽ(1)(t) = E(1)e−iωt + cc. (3.4)

E(1) here is the linear electric field amplitude incident upon the crystal. The

nonlinear polarization that is created in such a crystal is given according to Eq.

(3.2) as P̃ (2) = χ(2) ˜E(1)(t)
2

which can also be written in the form of Eq. (3.5).

P̃ (2) = 2χ(2)E(1)E(1)∗ + (χ(2)E(1)2e−2ωt + cc.) (3.5)

The first term in Eq. (3.5) for the second order polarization is a contribution that

has zero frequency component, it should be noted that this term does not generate

electromagnetic radiation since its second time derivative is zero. It creates a static

electric field within the nonlinear material, a process called optical rectification.

The second term has a contribution at frequency 2ω. According to the nonlinear

wave equation Eq. (3.5), this latter contribution can lead to the generation of
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radiation at the second harmonic frequency. Other nonlinear processes include

higher harmonic generation, optical parametric oscillation and sum and difference

generation in response to two frequency inputs to the nonlinear material [91].

Since this thesis considers Josephson-vortex-THz photonic crystals taking into ac-

count nonlinear properties of the Josephson media, it is natural here to review

properties of more usual nonlinear optical photonic crystals based on the review

[60] by Bertolotti. This discusses the nonlinear properties of photonic crystals in

higher dimensions, and introduces a multiscale approach to analyzing the field am-

plitudes within them. The first section of the review describes a parametric optical

process in a nonlinear photonic crystal, the basic approach used is to use a plane

wave solution (3.6) to the nonlinear wave equation of monochromatic form.

E(x, t) = E(x)EL(x, t) (3.6)

Where EL is the plane wave solution to the linear part of the wave equation. Sub-

stituting (3.6) in a nonlinear wave equation a set of 3 coupled nonlinear equations

can be derived for the electric field amplitudes of pump, signal and idler waves

for the case of a parametric oscillator, eliminating the time varying exponential

make the expressions time independent. The equations also involve the second

order susceptibility χ(2) , as part of the nonlinear term on the right hand side and

can be used to describe any parametric optical process in a second order nonlinear

material. Here the mathematical procedure will only be described qualitatively.

Assuming that the nonlinearity of the photonic crystal is weak, we can consider

the nonlinearity to only affect the linear solutions over a large length scale, greater

than the period d of the structure. This makes it possible to apply a multiscale
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expansion, separating the solution into independent variables xα = λαx, with λ

the perturbing parameter and α an integer value.

Separating the electric field into a fast and slow varying function of position and

assuming weak nonlinearity allows a perturbative solution of the form (3.7) to be

found for the electric field inside a nonlinear crystal.

E(x0, x1) = A(x1)EL(x0) (3.7)

Here A is a slowly varying nonlinear amplitude with a characteristic length scale

of variation x1 and EL the solution of the linear wave equation with the scale

of variation x0 � x1. Substituting (3.7) to the coupled system of equations and

collecting terms proportional to λ gives a first order expression for the electric field.

The separation of the solution into linear and nonlinear parts with different length

scales will be used in Section 4.5 to develop an analytical approximation for the

second harmonic in the JV photonic crystal.

Figure 3.4: Localization of the electric field modulus inside a nonlinear 1D photonic
crystal, plotted for the two transmission peaks in the spectrum shown in red and
blue [60]. c©IOP Publishing. Reproduced by permission of IOP Publishing. All
rights reserved.

Fig. 3.4 shows the electric field distribution calculated within a crystal for the two

27



transmission peaks in the spectrum in this case. The two length scales of variation

can be clearly seen. The nonlinearity affects the wave amplitude of the linear

solution only on a large distance scale. Nonlinearity allows optical photonic crystals

to display second harmonic generation, giving a signal at double the fundamental

frequency ω. This is a possible way to increase the frequencies emitted by current

THz devices.

In addition to the multiscale mathematical method mentioned above in this section,

it should be mentioned that there are several useful properties of nonlinear waves

in photonic crystals. Ostrovskaya and Kivshar [93] have shown how nonlinear

periodic structures can support both optical waves and matter waves (as described

by their de Broglie wavelength [94]). Parallels are drawn between the two for the

case of Bose-einstein condensates in optical lattices and nonlinear photonic crystal

structures. This indicates that nonlinear waves can behave like particles and can be

described by a nonlinear Schrödinger equation. Nonlinearity in materials allows

for localized modes to appear in the band gap of the spectrum, also known as

gap solitons [95]. A soliton is by definition a localized solution to the nonlinear

dispersive wave equation that remains invariant upon propagation, in Section 2.1.2

JVs are described mathematically by their soliton solutions. In fully integrable

systems, these waves remain intact after collision events and in essence they behave

as particle-like entities. Gap solitons occur in materials with third order or Kerr

nonlinearity (which is similar to the nonlinearity in Josephson media) and open up

new applications of photonic crystals for optical signal processing and switching.

Also for generating tunable band gap structures and waveguides.
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3.3 The Josephson-vortex THz photonic crystal

There are two main types of layered superconductors which have interesting phys-

ical properties, including highly anisotropic (Bi-, Tl- and Hg-based) high-Tc super-

conductors as well as artificial multilayered heterostructures such as (Nb − Al −

AlOx − Nb). These layered structures consist of superconducting and insulating

layers which are parallel to the crystallographic ab plane, and can be described as

stacks of Josephson junctions (SJJ) [33]. When an external magnetic field Hab is

applied parallel to the ab plane, Josephson vortices (JVs) can penetrate the sample

and form a triangular lattice [96]. Josephson vortices have a very weak interaction

with lattice crystal defects and consequently can form a near perfect lattice at

low temperatures. These materials offer the possibility to design a THz photonic

crystal which can be tuneable by an applied in-plane magnetic field.

The JV lattice is a periodic array that scatters electromagnetic waves in the THz-

frequency range. It has already been shown [21, 27, 48] that JV lattices can pro-

duce a theoretical photonic band-gap structure (THz photonic crystal) with easily

tuneable forbidden zones controlled by the in-plane magnetic field. The scattering

of electromagnetic waves by JVs results in a strong magnetic-field dependence of

the reflection and transparency. Fully transparent or fully reflected frequency win-

dows can be conveniently tuned by the in-plane magnetic field. These proposals

are potentially useful for controllable THz filters.

By studying the influence of a fixed JV lattice on the propagation of THz electro-

magnetic waves, it was found [27] that the interaction of the propagating wave and

JV lattice results in forbidden gaps in the frequency spectrum (i.e., a THz pho-

tonic crystal) conveniently tuneable by the applied magnetic field Hab. Moreover,
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Figure 3.5: Structure of the JV lattice in layered superconductors where black
horizontal lines represent thin superconducting layers separated by a distance s
and grey rectangles represent the triangular lattice of JVs between the layers,
separated by distances dx and dy along the x and y axes respectively. Taken from
[102], with kind permission of the European Physical Journal (EPJ).

by changing Hab one can easily change, by an order of magnitude, both the trans-

mission, T , and reflection, R = 1 − T , coefficients of the electromagnetic waves.

Thus, the layered superconducting sample can operate as a THz-frequency filter

tuned by the applied magnetic field Hab.
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3.3.1 Model for linear JV photonic crystal

What follows is a brief description of the model for analyzing the linear properties

of the JV photonic crystal [27], this will be the basis for investigating the nonlinear

properties in later chapters. Considering a high-Tc superconductor with supercon-

ducting layers in the xz coordinate plane, which coincides with crystallographic

ab plane with the coordinate y axis (along the c axis) across the layers. In this

case the superconducting layers are much thinner than their separation s along the

y axis, which allows the spatial variation of electromagnetic fields to be ignored

within the superconducting layers.

The high anisotropy of the system is quantified by the anisotropy coefficient γ =

λc/λab given by the the ratio of the out-of-plane penetration depth λc and the

in-plane penetration depth λab. The in-plane field Hab is applied in the xz plane,

with the Josephson vortices parallel to the z axis. The distance dx between JVs in

the lattice along the x direction is much larger than along the y direction dy, so the

lattice consists of densely packed rows of vortices along the y-axis. According to

the anisotropic London model [97] for layered superconductors, the ratio dx/dy =

and is independent of the applied magnetic field and can also be described by

dx/dy = γ. The typical value of γ for a single crystal of Bi2212 is 300-600 [27].

We consider waves propagating along the superconducting layers so that their

oscillating magnetic field is in the same axis as the Josephson vortices

H(x, y, t) = ẑH0(x) exp(iqy − iωt),

where ẑ is the unit vector along the z-axis and q the y-axis wavevector (perpen-

dicular to the superconducting layers). The gauge-invariant phase difference ϕn
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in a layered superconductor can be described by the set of coupled sine-Gordon

equations [25]

(
1− λ2ab

s2
∂2n

)(
∂2ϕ(n)

∂t2
+ ωr

∂ϕ(n)

∂t
+ ω2

J sinϕ(n)

)
− c2

ε

∂2ϕ(n)

∂x2
= 0. (3.8)

Here n is an integer that labels each superconducting layer of the system along

the y-axis, ωJ is the plasma frequency, ∂2n is an operator responsible for coupling

between the layers and is given by ∂2nfn = fn−1 + fn+1 − 2fn when acting on a

function fn.

The equations are similar in form to the sine-Gordon equation for a single Joseph-

son junction as derived in Section 2.1.1, however the inductive coupling of junc-

tions through the operator (1 − λ2ab/s2∂2n) has to be considered. This takes into

account the coupling of the magnetic field between superconducting layers and is

the strongest coupling present in layered superconductors. The capacitive coupling

constant in layered superconductors can been shown to be negligible [98] and hence

can be ignored.

ωr = 4πσ⊥/ε is the damping frequency which is proportional to the transverse

conductivity σ⊥, for low enough temperatures this can be reduced to a negligibly

small value where ωr/ωJ � 1 [27]. Eq. (3.8) was derived to find the radiation given

off when a triangular vortex lattice was accelerated by a current perpendicular to

the superconducting layers.

Since ϕ can be represented as a superposition of the two solutions mentioned in

Section 2.1.1, ϕ0 for Josephson vortices and ϕ1 for Josephson plasma waves. It

can be assumed that |ϕ1(x, y, t)| � |ϕ(n)
0 (x, t)|, so a first order Taylor expansion

sinϕ ≈ sinϕ0 + (cosϕ0)ϕ1 can be substituted in Eq. (3.8).
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The soliton solution for the phase ϕ0(x) due to a single Josephson vortex centred

at x = 0 is given by Eq. (3.9) [99]

ϕ0 = π + 2 tan−1(x/l0) (3.9)

where l0 is the vortex radius. It’s useful here to define a normalised magnetic field

hab = Hab/H1, where H1 = 2φ0/γs
2, the condition hab � 1 must apply for the

vortex solutions to be valid.

The period dx of the vortex lattice along the x-axis can be calculated using Eq.

(3.10), which explicitly shows that the lattice spacing is inversely proportional to

the applied magnetic field.

dx =
2l0√
hab

(3.10)

Since in equation 3.8 the vortex ‘potential term’ is given by 〈cosϕ0〉 we should

take the cosine of Eq. (3.9) which gives us

cosϕ0(x) = − l
2
0 − x2

l20 + x2
. (3.11)

Eq. (3.11) is plotted in Fig. 3.6, showing that the ‘potential’ decays quickly away

from a Josephson vortex. Due to the high anisotropy of the vortex lattice given

by γ, an important simplification can be made at this point. The close packing

of vortices along the y-axis in this model means that radiation of THz frequencies

cannot probe the structure of individual vortices in this direction and the problem

can be reduced to a one dimensional photonic crystal. This approximation is called

the continuous 1D limit and has the consequence that the function cosϕ0 can be
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Figure 3.6: Plot of cosϕ0(blue) for a single Josephson vortex located at x = 0
[27].The step function approximation (dashed black line) can be used to calculate
the linear spectrum.

represented by the average over the layers in the y direction, given by Eq. (3.12).

〈cosϕ
(n)
0 〉 =

1

2N

n+N∑
l=n−N

cosϕ
(l)
0 (3.12)

where n labels each superconducting layer along the y-axis and N is the number

of vortices summed either side of this layer.

Since the decay of 〈cosϕ0〉 away from a vortex is so sudden the function can be

approximately represented by a step function that has the same value for the

integral over the unit cell of the vortex lattice. To calculate the linear spectrum

for the JV photonic crystal, we can use this step function approximation for the
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vortex potential to define constant values for 〈cosϕ0〉 in two separate regions of

the unit cell, plotted in Fig. 3.6. Region 1 is the space between vortex cores in the

x-direction and region 2 corresponds to a vortex core.

Using Bloch wave solutions of the form ψ(x) = u(x, k) exp (ikx) to the linear Sine-

Gordon equation, an equation for the periodic function u can be found. Applying

periodic boundary conditions with the same periodicity L of the vortex lattice,

the linear spectrum for Josephson plasma waves in the Josephson-vortex photonic

crystal can be derived. The expression for this is given in Eq. (3.13) and plotted

in Fig. 3.7 [27]. Since the spectrum for the second harmonic will be derived by the

same basic method in Chapter 4 and this represents original work in this thesis,

the detail of the derivation will be shown there.

cos(αb) cos(β)− α2 + β2

2αβ
= cos[k(b+ 1)] (3.13)

α and β represent effective wavevectors in region 1 and region 2 respectively and

b is the width of region 1 along the x-axis, or the distance between vortices. Fig.

3.7 shows us that the spectrum of Josephson plasma waves in the presence of JVs

has a photonic band gap structure with a THz band gap tunable by the applied

magnetic field hab. From this the reflection and transmission coefficients can be

found by the transfer matrix method.

It should also be noted that the JV lattice can be driven by applying a c-axis

current perpendicular to the superconducting layers. In this case the spectrum

has been predicted to display a Doppler effect which could be used to further tune

the reflectivity of the JV photonic crystal.
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Figure 3.7: Linear band gap structure for EM waves in the JV photonic crystal.
Plotting dimensionless ω̃ against k(hab)

−1/2 for qs = 0.3π (solid line) and qs =
0.05π (dashed line). Dimensionless magnetic field hab = 0.2, s = 15Å, λab = 2000Å
and γ = 600. Reprinted figure with permission from [21]. Copyright (2005) by the
American Physical Society.

36



Chapter 4

Second harmonic generation

This thesis will now move on to investigate the effects of the nonlinearity of the

Josephson-vortex THz photonic crystal. Specifically the focus will be on higher

harmonic generation in the next two chapters, and then the nonlinear mixing of

THz waves in Chapter 6.

It is well known in nonlinear optics that materials that display nonlinear behaviour,

i.e. a nonlinear response to an applied electromagnetic field, can exhibit unusual

optical properties. These nonlinear effects are displayed for high amplitude fields.

As shown in Section 3.2, a material with second order nonlinear susceptibility

χ(2) can produce a second harmonic at a frequency 2ω in response to an input at

frequency ω. The second harmonic generation process is illustrated schematically

in Fig. 4.1.

The nonlinearity of the JV THz photonic crystal occurs due to the nonlinear

Josephson coupling between the superconducting layers, this gives the possibility

of second harmonic generation in the crystal. By extending the approach outlined

in Section 3.3.1, it is hoped that an analysis can be made of the second harmonic
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Figure 4.1: Schematic diagram for second harmonic generation in a nonlinear ma-
terial with non-zero second order susceptibility χ(2) represented by the rectangular
box. The left arrow represents an input at frequency ω and the two right ar-
rows represent the waves generated from the crystal at ω (first harmonic) and 2ω
(second harmonic). Figure adapted from [91].

in the JV photonic crystal.

4.1 Deriving the second harmonic equations

The spatial and temporal variance of the inter-layer gauge-invariant phase differ-

ence ϕ of the order parameter for layered superconductors is once again given by

the coupled sine-Gordon equations, which can be written in the continuous limit

approximation as Eq. (6.1) [101].

[
1− λ2ab

∂2

∂y2

](
1

ω2
J

∂2ϕ

∂t2
+ sinϕ

)
− λ2c

∂2ϕ

∂x2
= 0, (4.1)

Here Eq. (3.8) from the previous chapter has been divided through by ωJ and

simplified using the expression λc = c2/
√
ε. Since ϕ1 varies slowly on the scale of

the distance s between layers we can replace the discrete differential operator from

Eq. (3.8) with a continuous derivative w.r.t. y.
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Note that the damping term has been neglected in Eq. (6.1), which is valid for

samples thinner than the skin depth (about 0.3 mm for standard high-Tc supercon-

ductors). For samples thicker than this, the dissipation of Josephson plasma waves

should be taken into account. Since the distance between vortices however is much

smaller than the characteristic scale of damping for magnetic fields (H / Φ0/γs
2),

this damping can be safely neglected. So for low enough temperatures, Josephson

plasma waves scatter many times before they significantly decay in amplitude.

Using the same procedure of averaging the phase contribution from vortices along

the y-axis as used in Section 3.3.1 we can also take the Taylor expansion sinϕ ≈

sinϕ0+(cosϕ0)ϕ1−(sinϕ0ϕ
2
1/2. This time we are including the second order term

which allows Eq. (4.2) to be derived, taking in to account the nonlinear current

contribution.

[
1− λ2ab

∂2

∂y2

](
1

ω2
J

∂2ϕ1

∂t2
+ 〈cosϕ0〉ϕ1 +

〈sinϕ0〉
2

ϕ2
1

)
− λ2c

∂2ϕ1

∂x2
= 0. (4.2)

Here the functions 〈cosϕ0〉 and 〈sinϕ0〉 represent the average values of these func-

tions in the y direction. It’s important to not here that without the presence of

vortices, there would be no second harmonic generation in layered superconduc-

tors since the nonlinear expansion of the Josephson current would contain only

odd powers of ϕ1.

We can insert a solution (4.3) to Eq. (4.2) for the first and second harmonic

amplitudes respectively,

ϕ1 = ψ1 cos(ωt− qy) + ψ2 cos(2ωt− 2qy) (4.3)
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where ψ1 is the amplitude of the first harmonic and ψ2 the amplitude of the second

harmonic. This gives us two coupled nonlinear equations Eq. (4.4) and Eq. (4.5)

for ψ1 and ψ2 respectively when all higher harmonics from this substitution are

ignored.

(〈cosϕ0〉 − ω̃2)ψ1 −
λ2c

(1 + λ2abq
2)
ψ
′′

1 =
〈sinϕ0〉

2
ψ1ψ2 (4.4)

(〈cosϕ0〉 − 4ω̃2)ψ2 −
λ2c

(1 + 4λ2abq
2)
ψ
′′

2 =
〈sinϕ0〉

4
ψ2
1 (4.5)

We also introduce the dimensionless frequency ω̃ = ω/ωJ . The coupling of these

two equations is significant since it allows for feedback between the two harmon-

ics. It’s interesting to note that these equations are in the form of a nonlinear

Schrödinger type equation for THz waves in the JV photonic crystal, where 〈cosϕ0〉

represents the potential due to vortices. The second term (containing ψ
′′
1,2) can be

thought to represent the effective mass of THz waves in the JV photonic crystal.

4.2 Harmonic interaction potential

Eq. (4.4) and Eq. (4.5) contain a potential 〈sinϕ0〉 as part of the nonlinear

term not seen in the linear calculations, this can be called the ‘vortex interaction

potential’. An expression for 〈sinϕ0〉 can be derived in a similar way to 〈cosϕ0〉 as

discussed in Section 3.3.1. For a single Josephson vortex the harmonic interaction

potential can be given by Eq. (4.6), and is plotted in Fig. 4.2. The value of sinϕ0

also decays away from a vortex but not as quickly as cosϕ0.
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sinϕ0(x) = − 2l0x

l20 + x2
(4.6)

Figure 4.2: Plot of sinϕ0 based on Eq. (4.6) for a single Josephson vortex located
at x = 0. Distance x has been normalised by the vortex radius l0.

To model 〈cosϕ0〉 and 〈sinϕ0〉 over the entire vortex lattice these functions need

to be made periodic. Although it would be possible to sum the contribution due

to all vortices in the lattice at any given coordinate x this is unnecessary since

the contribution due to even neighbouring vortices is small for the magnetic field

strengths that will be considered here. It has been taken as sufficient here to simply

consider the 〈sinϕ0〉 contribution from the nearest vortex only.
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The periodic functions are given in Eq. (4.7) and Eq. (4.8).

〈cosϕ0〉 = − s

dy

∑
n

(x− 2n+1
2
dx)

2 − l20
(x− 2n+1

2
dx)2 + l20

(4.7)

〈sinϕ0〉 = − s

dy

∑
n

2l0(x− 2n+1
2
dx)

(x− 2n+1
2
dx)2 + l20

(4.8)

Here n is an integer labelling each unit cell of the vortex lattice, it assures that the

potential considered for both 〈cosϕ0〉 and 〈sinϕ0〉 is only considering the closest

vortex at each point. We can refer to this as the nearest vortex approximation. At

the boundary between vortices in the x direction the potential function switches

from the nth vortex to the (n+ 1)th vortex. As shown in Fig. 4.4, this introduces

a discontinuity in 〈sinϕ0〉. The factor s/dy has the effect of averaging in the y

direction based on the number of vortices per layer.

Fig. 4.3 shows that it’s fairly straight forward to make 〈cosϕ0〉 periodic and

continuous over the entire vortex lattice by just taking into account the nearest

vortex approximation at each point.
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Figure 4.3: Plot of the value of 〈cosϕ0〉 to a series of 3 unit cells of the vortex
lattice based on Eq. (4.7), where only the contribution of the nearest vortex is
taken into account. hab = 0.005.

Fig. 4.4 however shows that 〈sinϕ0〉 is discontinuous at the midpoint between

vortices when only taking into account the nearest vortex. Taking a sum over

more nearest neighbours, first a sum over 3 vortices, (i.e. the nth vortex plus two

nearest neighbours) and then a sum over 5 vortices (nth plus 4 nearest neighbours)

allows this discontinuity to be reduced. The effect of this approximation on the

final results will be discussed in Section 4.4.
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Figure 4.4: Plot of the the value of 〈sinϕ0〉 due to a series of 3 unit cells of the
vortex lattice based on Eq. (4.8), taking into account first the contribution of the
nearest vortex (solid blue line), then using a sum over the 3 nearest vortices (dashed
green line) and a sum over the 5 nearest vortices (dashed red line). hab = 0.005.

4.3 Second harmonic linear spectrum

The linear spectrum for the second harmonic can be calculated in the same way

as the first harmonic that was briefly described in Section 3.3, using Bloch wave

solutions to the linear part of the second harmonic equation given by Eq. (4.9).

Here the nonlinear term on the right hand side has been ignored.

(〈cosϕ0〉 − 4ω̃2)ψL2 −
γ2

4q2
ψ
′′

L2 = 0 (4.9)

Here ψL2 is the linear solution to Eq. (4.5). We can substitute a Bloch wave

solution of the form ψL2 = v(x, k)eikx into Eq. (4.9) to give a quadratic expression
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(4.10) for the periodic function v.

v
′′

+ 2ikv
′
+ (

4q2

γ2
(4ω̃2 − 〈cosϕ0〉)− k2)v = 0 (4.10)

We can write the linear solutions for v in terms of right travelling and left travelling

waves with amplitudes D+ and D− respectively, each with wavevectors k± given

by Eq. (4.11).

v = D+e
ik+x +D−e

ik−x

k± = −k ± 2q

γ

√
4ω̃2 − 〈cosϕ0〉 (4.11)

Using the step function approximation for 〈cosϕ0〉 outlined in Section 3.3 again

we can define the function separately in the first region between vortex cores and

the second region corresponding to a vortex core as shown in Fig. 4.5.

v can be defined separately in the the two regions, from this point onwards the

index (1) represents a quantity in region 1 and the index (2) a quantity in region

2.

v(1) = D1
+e

i(k
(1)
+ )x +D1

−e
i(k

(1)
− )x

v(2) = D2
+e

i(k
(2)
+ )(x−L) +D2

−e
i(k

(2)
− )(x−L)

The expression for v(2) is defined at x− L for reasons of simplicity later on which

is valid because of the periodic boundary conditions which will be used. So we can
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Figure 4.5: 2D representation of the Josephson-vortex photonic crystal with pe-
riodicity L = l1 + l2, where Region 1 represents the space between vortices of
thickness l1 along the x-axis and Region 2 represents the space where a vortex
(Grey rectangle) is present, with diameter l2.

apply the periodic boundary condition matching the period of the vortex lattice L

for v where we require v(x + L)(1) = v(x)(2), which gives the following condition

on the coefficients

D
(1)
+ +D

(1)
− = D

(2)
+ +D

(2)
− . (4.12)

We also need to apply these periodic boundary conditions to the first spatial deriva-
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tive denoted by v
′

for which we require that v
′
(x + L)(1) = v

′
(x)(2), this gives us

the condition.

−ik(D
(1)
+ +D

(1)
− ) +

2iq

γ

√
ε1 = −ik(D2

+ +D2
−) +

2iq

γ

√
ε2, (4.13)

where ε1,2 = 4ω̃2 − 〈cosϕ0〉1,2. We can combine Eq. (4.12) and Eq. (4.13) to give

Eq. (4.14) and Eq. (4.15)

D
(1)
+ =

1

2
(D

(2)
+ +D

(2)
− ) +

1

2

√
ε2√
ε1

(D
(2)
+ −D

(2)
− ) (4.14)

D
(1)
− =

1

2
(D

(2)
− +D

(2)
− )− 1

2

√
ε2√
ε1

(D
(2)
+ −D

(2)
− ) (4.15)

Now we also require that the two solutions are matched at the boundary between

the two regions (At x = l1 as defined above). Hence we use the condition v(1)(l1) =

v(2)(l1) in order to make v continuous at the boundary. Introducing the effective

wavevectors α in region 1 and β in region 2

α =
2q

γ

√
ε1,

β =
2q

γ

√
ε2,

we can write Eq. (4.16) as follows

D
(1)
+ eiαl1 +D

(1)
− e−iαl1 = (D

(2)
+ e−iβl2 +D

(2)
− eiβl2)eikL. (4.16)

Matching the derivatives at the boundary x = l1 using the condition v
′
(l1)

(1) =
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v
′
(l1)

(2) gives us

ε1(D
(1)
+ eiαl1 −D(1)

− e−iαl1) = ε2(D
(2)
+ e−iβl2 +D

(2)
− eiβl2)eikL. (4.17)

Using all these four boundary conditions we can derive four simultaneous homo-

geneous equations for the coefficients and introducing new variables x and y given

by

x = D
(2)
+ +D

(2)
− ,

y = i(D
(2)
+ −D

(2)
− ),

D
(1)
+ =

1

2
x+

1

2

√
ε2√
ε1

y

i
, (4.18)

D
(1)
− =

1

2
x− 1

2

√
ε2√
ε1

y

i
. (4.19)

Substituting Eq. (4.18) and Eq. (4.19) into first Eq. (4.16) and then Eq. (4.17)

allows us to derive the following two homogeneous equations:

(cosα− eikL cos β)x+ (

√
ε2√
ε1

sinα + sin βeikL)y = 0 (4.20)

−(

√
ε2√
ε1
eikL sin β − sinα)x+ (

√
ε2√
ε1

cosα−
√
ε2√
ε1
eikL cos β)y = 0. (4.21)

In order to solve the two simultaneous homogeneous Eq. (4.20) and Eq. (4.21) we

can put them into a matrix form (4.22)

48



A B

C D


x
y

 = 0 (4.22)

The matrix elements A-D here are defined by

A = cosα− eikL cos β

B =

√
ε2√
ε1

sinα + eikL sin β

C =

√
ε2√
ε1
eikL sin β − sinα

D =

√
ε2√
ε1

cosα−
√
ε2√
ε1
eikL cos β

Eq. (4.22) has two solutions, a trivial solution when the amplitudes are equal to

zero so we have no waves at all and the solution where the matrix determinant is

equal to zero. Setting the determinant to zero and rearranging allows us to derive

an expression for the second harmonic spectrum ω(k).

The second harmonic spectrum given here by Eq. (4.23) has the same basic form

as the first harmonic spectrum (i.e. Eq. (3.13)). The only change for the case of

the second harmonic is that the values of the effective wavevectors α and β are

different to the first harmonic as defined below:

cos(kdx) = cos(αl1) cos(βl2)−
α2 + β2

2αβ
sinαl1 sin βl2, (4.23)

αl = k0(q)
√
l2ω2 − 1,
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βl = k0(q)

√
l2ω2 + π

√
hab − 1,

l is an integer that labels the harmonic number, i.e. 1 for the first harmonic and

2 for the second harmonic; k0 is defined by:

k20 =
1 + l2λ2abq

2

λ2c
.

Figure 4.6: The linear spectra for the first harmonic ω(k1)) (blue line) and second
harmonic ω(k2)) (red dashed line) in the JV photonic crystal for hab = 0.2. The
scaling of the x-axis for the first and second harmonics is so that crossing points
correspond to the resonance condition k2 = 2k1. Reprinted figure with permission
from [101]. Copyright (2012) by the American Physical Society.
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Fig. 4.6 shows that both the first and second harmonic spectra have the same

basic form and both display a photonic bandgap in their spectrum. There are a

number of crossing points for the spectra of the two harmonics. Resonances for the

second harmonic can be shown to occur where the resonance condition k2 = 2k1 is

satisfied, hence the reason for the rescaling of the x-axis for k2. With this rescaled

axis we would expect the crossing points of these two spectra to be significant in

terms of resonances for the second harmonic.

4.4 Numerical results

Using a second order multiderivative numerical method for the integration of ordi-

nary differential equations [100] ,we can calculate the amplitudes for the first har-

monic ψ1(x) and second harmonic ψ2(x) through the crystal based on Eq. (4.4)

and Eq. (4.5). To simplify the problem numerically we can introduce the new

variable P1,2 = ψ
′
1,2 and a normalised displacement x̃ =

√
habx
2l0

leaving us with Eq.

(4.24) and Eq. (4.25).

(〈cosϕ0〉 − ω̃2)ψ1(x̃)− λ2c
(1 + λ2abq

2)
P
′

1 =
〈sinϕ0〉

2
ψ1ψ2, (4.24)

(〈cosϕ0〉 − 4ω̃2)ψ2(x̃)− λ2c
(1 + 4λ2abq

2)
P
′

2 =
〈sinϕ0〉

4
ψ2
1. (4.25)

The numerical values of ψ1,2 and P1,2 can be calculated at successive points based

on the second order Taylor expansions given in Eq. (4.26) and Eq. (4.27).
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P1,2(x̃+ dx̃) = P1,2(x̃) + P
′

1,2(x̃)dx̃+
1

2!
P
′′

1,2(x̃)dx̃2, (4.26)

ψ1,2(x̃+ dx̃) = ψ1,2(x̃) + P1,2(x̃)dx̃+
1

2!
P
′

1,2(x̃)dx̃2. (4.27)

Based on Eq. (4.24) and Eq. (4.25) the first spatial derivatives P
′
1,2 can be written

as :

P
′

1 =
4l20q

2

habγ2

[
(〈cosϕ0〉 − ω̃2)ψ1(x̃)− 〈sinϕ0〉

2
ψ1(x̃)ψ2(x̃)

]
,

P
′

2 =
4l20q

2

habγ2

[
(〈cosϕ0〉 − 4ω̃2)ψ2(x̃)− 〈sinϕ0〉

4
ψ2
1(x̃)

]
.

The second derivatives can be found by differentiating analytically once more with

respect to x̃.

P
′′

1 =
4l20q

2

habγ2

[
(〈cosϕ0〉 − ω̃2)P1 + 〈cosϕ0〉

′
ψ1 −

〈sinϕ0〉
2

(P1ψ2 + ψ1P2)−
〈sinϕ0〉

′

2
ψ1ψ2

]
,

P
′′

2 =
16l20q

2

habγ2

[
(〈cosϕ0〉 − 4ω̃2)P2 + 〈cosϕ0〉

′
ψ2 −

〈sinϕ0〉
4

2P1ψ1 −
〈sinϕ0〉

′

4
ψ2
1

]
.

Using the change of variables introduced here, expressions (4.7) and (4.8) must be

rewritten as :
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〈cosϕ0〉(x̃) =
s

dy

4x̃2 − hab
4x̃2 + hab

,

〈sinϕ0〉(x̃) = − s

dy

4
√
habx̃

4x̃2 − hab
.

The derivatives of 〈cosϕ0〉 and 〈sinϕ0〉 can be calculated analytically using the

product rule and are given by :

〈cosϕ0〉
′
(x̃) =

s

dy

16habx̃

(4x̃2 + hab)2
,

〈sinϕ0〉
′
(x̃) =

s

dy

4
√
hab(4x̃

2 − hab)
(4x̃2 + hab)2

.

We apply boundary conditions, where the value of ψ2(0) = 0 at x = 0, i.e. at

the interface between the vacuum and the JV photonic crystal, assuming that the

second harmonic wave is generated within the crystal due to nonlinearity. For the

first harmonic ψ1(0) = 0.5, a small amplitude at the crystal interface. Eq. (4.26)

and Eq. (4.27) can be used to calculate successive amplitudes at (x̃ + dx̃) which

can be computed as a function of distance x̃ of propagation through the crystal as

shown plotted in Fig. 4.7. The average value of the second harmonic amplitude has

been calculated for each input frequency to find resonances where the amplitude

increases.

We can define a tuning parameter Q =
d2x(1+λ

2
abq

2)

λ2c
which can be used to vary the

frequency of resonances for the second harmonic. The value of Q depends on both

the applied field hab which will affect the vortex lattice spacing as given by Eq.
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(3.10), as well as the y axis wavevector q which is altered by tilting the layered

superconductor with respect to the incoming radiation.

Figure 4.7: Spatial distribution ψ2(x) for the second harmonic near the resonance
ω(1) at ω = 3.5 (black line) and away from this resonance (blue line) for Q = 0.09.
By plotting the amplitude of the oscillations shown by the dashed line on the main
plot we can observe the larger scale oscillations of the second harmonic amplitude.
Reprinted figure with permission from [101]. Copyright (2012) by the American
Physical Society.

It can be seen from Fig. 4.7 that when plotting the amplitude ψ2 as a function of

propagation distance there is a sharp contrast in behaviour of the second harmonic

away from resonance and close to resonance. Away from resonance for the second

harmonic the amplitude is relatively small and constant, the disordered oscillation

in this case shows that the wavelengths of the two harmonics are not commensurate
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so we have destructive interference of the two. Close to a resonance frequency for

the second harmonic we see ordered oscillations with an overall amplitude that

increases steadily to a much larger value, eventually showing a saturation behaviour

as the second harmonic reaches a maximum value. Over larger distances we see

a long range oscillation in the amplitude which is shown by the envelope function

plotted in the inset of Fig. 4.7.

The different scales of oscillation of the second harmonic amplitude shown here dis-

play the same behaviour qualitatively as for the electric field in a nonlinear optical

photonic crystal [60], whereby the linear oscillations are modulated in amplitude

over a larger distance due to the weak nonlinearity(see Fig. 3.4).

Figure 4.8: Second harmonic resonances as a function of frequency for different
values of the tuning parameter Q as shown in the plot legend. Amplitudes are
normalised by the largest resonance and plotted on a log10 scale. l0/dx = 0.2,
ψ2(0) = ψ

′
2(0) = 0, ψ1(0) = 0.5, ψ

′
1(0) = 0.2, integration step dx̃ = 0.001.
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Figure 4.9: ψ̄2 as a function of ω̃ for the nearest vortex approximation (blue)
compared to the case where a sum over 3 vortices has been used (green dashed
line), Q = 0.09, all other parameters as Fig. 4.8.

The frequencies at which these resonances are displayed can be calculated by find-

ing the maximum value ψ̄2 reached by the long range oscillation of ψ2. At resonance

ψ̄2 is enhanced by several orders of magnitude when plotted on a log scale. This is

shown clearly in Fig. 4.8 for a number of values of the resonance tuning parameter

Q. Increasing the value of Q has the effect of reducing the frequency ω̃ of reso-

nances ω(1) and ω(2). The resonances also correspond to the crossing points of the

first and second harmonic linear spectra calculated in Section 4.3.
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Fig. 4.9 shows the effect on the resonances of summing over a larger number of

vortices rather than just the nearest vortex approximation, it can be seen that

there is no change in the frequencies of resonances although the amplitude of

the third resonance at ω̃ = 6.98 in particular is larger when summing over three

vortices. This indicates that for locating resonances of the second harmonic, the

nearest vortex approximation for 〈sinϕ0〉 is sufficient. The change to the resonance

amplitudes when summing over five vortices is negligible.

Using Eq. (3.10) we can write the resonance tuning parameter as Q =
4l20(1+λ

2
ab)

λ2c

q2

hab

to explicitly show its dependence on hab. It makes sense to vary the two parameters

q and hab separately whilst holding the other constant to investigate the affect on

the second harmonic resonance frequencies. At this point we also introduce a

normalised wavevector q̃ = q/qmax, where qmax = 0.3π/s, above this value the

continuous limit of the sine-Gordon equation is no longer valid and the discrete

coupled sine-Gordon equations should be used.

Fig. 4.10 shows the shift in the resonance frequencies from Fig. 4.8 when q̃ is

varied over a wider range of values while holding hab (and hence dx) constant. As

the y-axis wavevector q is increased, the resonances are shifted to lower frequency.

This corresponds to increasing the component of the wavevector perpendicular to

the layers.

Fig. 4.11 shows that the resonance frequencies can also be shifted to higher fre-

quency by increasing the strength of the applied magnetic field hab. In standard

units the magnetic field strengths used here are in the approximate range 0.1-1T.

It’s clear though that the second harmonic resonances can be readily tuned by vary-

ing the applied magnetic field as well as the relative transverse and longitudinal

wavevectors.
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Figure 4.10: Dependence of the resonance frequencies from Fig. 4.8 on the nor-
malised y-axis wavevector q̃ with hab fixed so that l0/dx = 0.2. All other parameters
are the same as in Fig. 4.8.

4.5 Second harmonic resonance approximation

The next question to be asked is whether the second harmonic resonances found

numerically in Section 4.4 can be described by an analytical method. Following

the same general approach that was described in Section 3.2 for the analysis of

nonlinear optical photonic crystals. We can separate the linear and nonlinear

parts of the solution by defining a slowly varying nonlinear amplitude A1 for the

first harmonic and A2 for the second harmonic, so the solutions can be represented

by ψ1 = A1ψL1 and ψ2 = A2ψL2. The linear solutions to Eq. (4.9) are represented

by their real parts, which can be given by
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Figure 4.11: Dependence of the resonance frequencies from Fig. 4.8 on the applied
magnetic field hab. q̃ = 0.127 All parameters are the same as in Fig. 4.8

ψL1 = Re(ψL1) = u1 cos k1x− v1 sin k1x, (4.28)

ψL2 = Re(ψL2) = u2 cos k2x− v2 sin k2x. (4.29)

Now we can assume that the nonlinear amplitudes are slowly varying in comparison

to the linear solutions and in doing so neglect the term containing the second spatial

derivatives A
′′
1,2. More explicitly we can assume that A1,2/dA1,2/dx � λ1,2 � dx.

Substituting the linear solutions above into Eq. (4.4) and Eq. (4.5) we can obtain

two equations for these nonlinear amplitudes.
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ψ
′

L1A
′

1 = − q
2

γ2
〈sinϕ0〉

2
ψL1ψL2A1A2 (4.30)

ψ
′

L2A
′

2 = − q
2

γ2
〈sinϕ0〉ψ2

L1A
2
1 (4.31)

Now we can utilise the fact that there are 3 different spatial periods to consider

in this problem. The first and shortest is the x-axis unit cell of the vortex lattice

dx which is much smaller than the wavelengths of the JPWs λ1,2 = 2π/k1,2 when

considering waves in the first Brillouin zone ±π/dx. However these wavelengths

are still much shorter than the scale of variation of the nonlinear amplitudes for

weak nonlinearity. This allows us to average the equations on two scales, the first

being within the unit cell dx and the second being over a wavelength of the JPWs.

Eq. (4.30) and Eq. (4.31) can be expressed in the simplified form given in Eq.

(4.32) and Eq. (4.33),

A
′

1 = I1A1A2, (4.32)

A
′

2 = I2A
2
1, (4.33)

where I1 and I2 are the values of the integrals which are not functions of x, defined

as
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I1 = −
q2
∫ L
0
dx〈sinϕ0〉[µ1(u1u2 + v1v2) + η1(u1v2 − v1u2)]

4γ2
∫ L
0
dx(µ2

1 + η21)

I2 = −
q2
∫ L
0
dx〈sinϕ0〉[µ2(u

2
1 − v21) + 2η2u1v1]

2γ2
∫ L
0
dx(µ2

2 + η22)
(4.34)

with µj = u′j − kjvj, ηj = v′j + kjuj and j = 1 or 2 (see Appendix 1 for details).

Eq. (4.32) and Eq. (4.33) are valid in the resonance points k2 = 2k1, the complete

procedure for averaging them is given in the appendix. It’s now possible to find

analytical solutions for A1 and A2 which are valid at resonance points for the

second harmonic.

Dividing Eq. (4.32) by Eq. (4.33) it’s possible to separate A1 and A2 and form

an integrable expression Eq. (4.35). Using the boundary condition A2(0) = 0

which comes from assuming that the second harmonic is generated only within the

sample and not the vacuum. The second condition is A1(0) = A0 which comes

from the assumption that the first harmonic has a non zero amplitude A0 at the

sample boundary x = 0.

A1A
′

1 =
I1
I2
A2A

′

2 (4.35)

Using the boundary conditions described above, Eq. (4.35) can be integrated,

giving Eq. (4.36) linking A1 and A2.

A2
1 =

I1
I2
A2

2 + A2
0. (4.36)

This can be used to decouple Eq. (4.32) and Eq. (4.33), resulting in
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A
′

2 = I1A
2
2 + I2A

2
0. (4.37)

The solutions to Eq. (4.37) will depend strongly in the sign of the integrals I1 and

I2, when these integrals have the same signs the solutions for nonlinear first and

second harmonic amplitudes can be written in the form given by Eq. (4.38) and

Eq. (4.39).

A1(x) = A0sec(A0

√
I1I2x) (4.38)

A2(x) = A0

√
I2
I1

tan(A0

√
I1I2x) (4.39)

These solutions have singularities on the scale x = π/2A0

√
I1I2 which we can refer

to as a Type-1 resonance. Fig. 4.12 shows the divergence of these solutions for

both the first and second harmonics. When compared to the envelope function of

the first and second harmonic amplitudes from Section 4.4 (plotted in Fig. 4.12),

a good agreement between analytical and numerical results can be seen.

For the case where the integrals I1 and I2 have opposite signs we can find solutions

given by Eq. (4.40) and Eq. (4.41) which have so singularities, we can refer to this

as a Type-2 resonance the distribution of which can be plotted in Fig. 4.13.

A1(x) = A0sech(A0

√
I1|I2|x) (4.40)

A2(x) = −A0

√
|I2|
I1

tanh(A0

√
I1|I2|x) (4.41)
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Figure 4.12: Harmonic amplitudes against normalised distance x/dx from the sam-
ple surface. Solid black curves were simulated using Eq. 4.4 and Eq. 4.5 at the
resonance ω = 3.49 with other parameters the same as Fig. 4.7. The dashed curves
are solutions of (4.38) and (4.39) in the resonance approximation for a Type-1 res-
onance for

√
I1I2 = 0.0036 and

√
I2/I1 = 0.65. Reprinted figure with permission

from [101]. Copyright (2012) by the American Physical Society.

Since the solutions 4.38 and 4.39 diverge at the resonance point it’s necessary to

detune slightly from resonance by a small amount δk = 2k1 − k2 to plot a finite

distribution of the second harmonic amplitude. By doing this we can derive the

expressions Eq. 4.42 and Eq. 4.43.

A
′

1 = Ĩ1A1A2 cos(δkx+ α1) (4.42)

A
′

2 = Ĩ2A
2
1 cos(δkx+ α2) (4.43)
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Figure 4.13: Harmonic amplitudes against normalised distance A0x
√
I1I2 from

the sample surface. The dashed curves are solutions of (4.40) and (4.41) in the
resonance approximation for a type-2 resonance for

√
I2/I1 = 0.5. Reprinted figure

with permission from [101]. Copyright (2012) by the American Physical Society.

For frequencies slightly detuned from resonance we can derive analytical solutions

Eq. 4.44 and Eq. 4.45,

A1(x) = A0sec(A0

√
Ĩ1Ĩ2 sin(δkx)/δk), (4.44)

A2(x) = A0

√
Ĩ2

Ĩ1
tan(A0

√
Ĩ1Ĩ2 sin(δkx)/δk), (4.45)

these can again be plotted against the numerical simulations covered in Section 4.4

as shown in Fig. 4.14. Extremely good agreement between numerical simulation

and analytical resonance approximation can be displayed for the first and second
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harmonic distributions close to a type-2 resonance for the case where |δk|/k2 � 1.

For the case shown in Fig. 4.14, we require that δk ' 10−3 for the solutions to Eq.

4.44 and Eq. 4.45 to not be divergent.

Figure 4.14: Harmonic amplitudes against normalised distance x/dx from the sam-
ple surface. The solid black line was obtained by numerical simulation of Eq. (4.4)
and Eq. (4.5) at ω = 3.5(near but not at resonance). Other parameters corre-
spond to Fig. 4.7. The dashed curve is the solution from (4.44) and (4.45) in the

near-resonance approximation for
√
Ĩ1Ĩ2/δk = 0.015,

√
Ĩ2/Ĩ1 = 56, α = 0 and

δk = 0.004. Reprinted figure with permission from [101]. Copyright (2012) by the
American Physical Society.
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Chapter 5

Third harmonic generation

Now we know from the results of the previous chapter it is possible to produce

second harmonic resonances in the JV photonic crystal. The next obvious step is

to expand the nonlinearity of the Josephson medium to third order and attempt

to locate resonances for the third harmonic. We can extend the approach used in

Chapter 4.

 

𝜒(3) 

𝜔 
𝜔 

3𝜔 

Figure 5.1: Schematic for third harmonic generation in a nonlinear material with
non-zero third order susceptibility χ(3) represented by the rectangular box. The
left arrow represents an input at frequency ω and the two right arrows represent the
waves generated from the crystal at ω (first harmonic) and 3ω (third harmonic).
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𝜒(2) 

𝜒(3) 

𝜔 

𝜔 2𝜔 

3𝜔 

Figure 5.2: Schematic for combined second and third harmonic generation in a
nonlinear material with non-zero values of both second order susceptibility χ(2)

and third order susceptibility χ(3).

As shown in Fig. 5.1 above, a nonlinear material with third order susceptibility

χ(3) should produce a third harmonic at frequency 3ω in response to an applied

electromagnetic wave at frequency ω. A material with nonzero values of both χ(2)

and χ(3) can generate second and third harmonics simultaneously as illustrated in

Fig. 5.2. To take into account the possibility of feedback from the third harmonic

to the second harmonic, the second order susceptibility will also be included in the

analysis for this chapter.

5.1 Deriving the third harmonic equations

The principle to derive the equations for third harmonic amplitudes is the same

as in the previous chapter for second harmonic generation, we start with the con-

tinuous limit of the coupled sine-Gordon equations (Eq. 6.1) and substitute the

solution Eq. (5.1) where ψ1,2,3 represent the amplitudes for first, second and third

harmonics respectively.

ϕ1 = ψ1 cos(ωt− qy) + ψ2 cos(2ωt− 2qy) + ψ3 cos(3ωt− 3qy) (5.1)
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This time when taking the Taylor expansion of the term sinϕ we include the

third order term proportional to ϕ3 so the full expansion is given by sinϕ ≈

sinϕ0 + (cosϕ0)ϕ1 − (sinϕ0)ϕ
2
1/2 − (cosϕ0)ϕ

3
1/6. Using this expansion and the

substitution (5.1), three equations (Eq. (5.2),Eq. (5.3) and Eq. (5.4)) can be

derived for the three harmonic amplitudes ψ1,2,3 respectively.

(〈cosϕ0〉 − ω2)ψ1 −
λ2c

(1 + λ2abq
2)
ψ
′′

1 =
〈sinϕ0〉

2
(ψ1ψ2) +

〈cosϕ0〉
8

(ψ3
1), (5.2)

(〈cosϕ0〉 − 4ω2)ψ2 −
λ2c

(1 + 4λ2abq
2)
ψ
′′

2 =
〈sinϕ0〉

2
(
1

2
ψ2
1), (5.3)

(〈cosϕ0〉 − 9ω2)ψ3 −
λ2c

(1 + 9λ2abq
2)
ψ
′′

2 =
〈sinϕ0〉

2
ψ1ψ2 +

〈cosϕ0〉
4

(
1

6
ψ3
1). (5.4)

We make the assumption that the magnitude a of the first harmonic amplitude

is subject to the condition a � 1, so we are considering a small amplitude input

wave. Based on this the second and third harmonic amplitudes are proportional

to a2 and a3 respectively. Again as with the second harmonic case, we are ignoring

all terms higher than the order of expansion in this case, i.e. all terms higher

order than a3. Eq. (5.3) for the second harmonic amplitude has no third order

term since these terms are higher order with respect to a. This indicates that the

feedback to the second harmonic from this model is negligible.

5.2 Numerical results

As for the second harmonic analysis we can introduce new variables P1,2,3 = ψ1,2,3

to reduce the equations to first order and simplify the problem numerically. A
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second order Taylor expansion about each point seems to be sufficient for this

calculation, where the expansions are given by Eq. (5.5) and Eq. (5.6).

P1,2,3(x̃+ dx̃) = P1,2,3(x̃) + P
′

1,2,3(x̃)dx̃+
1

2!
P
′′

1,2,3(x̃)dx̃2 (5.5)

ψ1,2,3(x̃+ dx̃) = ψ1,2,3(x̃) + P1,2,3(x̃)dx̃+
1

2!
P
′

1,2,3(x̃)dx̃2 (5.6)

To be concise the expressions for the derivatives P
′
1,2,3 and second derivatives P

′′
1,2,3

are given in Appendix 2 and the values of 〈cosϕ0〉(x̃) and 〈sinϕ0〉(x̃) are the same

as in Chapter 4 using the nearest vortex approximation for 〈sinϕ0〉(x̃). Using this

model we can calculate the values of ψ1,2,3(x) for many values of ω̃. Once again

the amplitudes for both second and third harmonics are set to zero at the crystal

interface (x = 0), assuming both harmonics are created within the JV photonic

crystal.

Plotting the second harmonic resonances using the third order expansion in this

chapter (shown in Fig. 5.3) shows that resonances occur at the same values of ω̃ as

in the previous chapter, which validates the approach used here. This is expected

since there is no contribution from the third order nonlinearity in Eq. (5.3).
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Figure 5.3: Third harmonic resonances(green) as a function of frequency for Q =
0.07, also shown are the second harmonic resonances (blue). All amplitudes are
normalised by the largest second harmonic resonance and plotted on a log10 scale.
l0/dx = 0.2, ψ2,3(0) = ψ

′
2,3(0) = 0,ψ1(0) = 0.5,ψ

′
1(0) = 0.2,dx = 0.001.

It can be clearly seen that there are two types of resonance here, shared resonances

for the second and third harmonics as well as resonances exclusive to the third

harmonic only. The third harmonic resonances are much smaller in amplitude than

the second harmonic resonances by at least an order of magnitude for the shared

resonance cases. Third harmonic resonances also seem to decay in amplitude faster

above the plasma frequency. However for the cases where we have a resonance for

the third harmonic alone, the amplitude can exceed that of the second harmonic

by an order of magnitude.
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Figure 5.4: ψ2 and ψ3 as a function of x/dx for Q = 0.09,at shared resonance
ω = 3.50 for the second and third harmonics. All other paramaters are the same
as in Fig. 5.3.

Fig. 5.4 shows the harmonic amplitudes ψ2 and ψ3 as a function of propagation

distance for a shared resonance for the second and third harmonics, showing that

at resonance the third harmonic amplitude steadily increases but at a much slower

rate than the second harmonic at resonance. In both cases the amplitudes reach

a maximum value and display a long range oscillation as for the second harmonic

amplitude in Chapter 4.
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We can also see in Fig. 5.5 the case where ψ3 grows beyond ψ2. Since ψ2 is not at

resonance in this case its oscillations are disordered compared to ψ3 , whereas ψ3

grows steadily and displays a regular pattern of oscillation over a longer distance

scale.

Figure 5.5: ψ2 and ψ3 as a function of x/dx for Q = 0.09,at resonance ω = 2.62
for the third harmonic. l0/dx = 0.2, ψ2,3(0) = ψ

′
2,3(0) = 0,ψ1(0) = 0.5,ψ

′
1(0) =

0.2,dx̃ = 0.001.

The effect of varying the tuning parameter Q is also the same for both second

and third harmonic resonances. Fig. 5.6 shows that increasing the component of

the wavevector perpendicular to the superconducting layers also shifts the third

harmonic resonances to lower frequency ω̃. This indicates that third harmonic

resonances can be controlled in the same manner as second harmonic resonances by

varying the applied field as well as relative longitudinal and transverse wavevectors.
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Figure 5.6: Dependence of the third harmonic resonance frequency from Fig. 4.8
at ω̃ = 2.62 on the normalised y-axis wavevector q̃. All other parameters are the
same as in Fig. 5.3.

Third harmonic resonances can also exceed the amplitude of the second harmonic

in certain cases
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Chapter 6

Frequency mixing

Another well known nonlinear effect in photonic crystals described in Chapter

2 is sum and difference frequency generation [91]. The nonlinear mixing of two

frequencies ω1 and ω2 in a material can produce harmonics with the sum ω1 + ω2

and difference ω1 − ω2 of the input frequencies. Due to the nonlinearity of the

JV photonic crystal it should be possible to produce these sum and difference

harmonics when two input frequencies are applied to the crystal. The sum and

difference waves are produced as a result of the product of two harmonic waves

with differing frequencies.

Sum and difference generation offers the possibility of shifting to both higher and

lower frequencies than the plasma frequency in layered superconductors. We would

expect a higher degree of control over the resonances produced, since we can vary

the difference between the frequency inputs and the difference between the angle

of incidence of each wave.
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Figure 6.1: Schematic diagram of frequency mixing with two inputs to a nonlinear
photonic crystal, the arrows on the left representing the inputs to the crystal at
frequencies ω1 and ω2, while the arrows on the right represent the output harmonics
ψ+ and ψ− generated within the crystal.

6.1 Deriving the sum-difference amplitude equa-

tions

Again the starting point is the coupled sine-Gordon equation:

[
1− λ2ab

∂2

∂y2

](
1

ω2
J

∂2ϕ

∂t2
+ sinϕ

)
− λ2c

∂2ϕ

∂x2
= 0. (6.1)

Here, we must use a solution (6.2) containing two frequency input waves as well as

the sum and difference of two input frequencies ω1 and ω2. We consider the sinϕ0

term expanded to second order as for the second harmonic case in Chapter 4.

ϕ1 = ψ1(x) cos(ω1t− q1y) + ψ2(x) cos(ω2t− q2y) +

ψ+(x) cos((ω1 + ω2)t− (q1 + q2)y) +

ψ−(x) cos((ω1 − ω2)t− (q1 − q2)y) (6.2)
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Here ψ+ is the amplitude of the sum harmonic with frequency ω1 + ω2 and ψ− is

the amplitude of the difference harmonic with frequency ω1−ω2. q1 and q2 are the

y-axis wavevectors for the two input THz waves respectively. We can substitute

this solution to Eq. (6.1) and derive from this four coupled equations for the input

harmonic amplitudes ψ1 and ψ2, as well as the sum and difference amplitudes

ψ+ and ψ−. These equations are reached by ignoring higher harmonics and just

keeping the sum and difference terms.

(〈cosϕ0〉 − ω1
2)ψ1 −

λ2c
(1 + λ2abq

2
1)
ψ
′′

1 =
〈sinϕ0〉

2
(ψ2ψ− − ψ2ψ+) (6.3)

(〈cosϕ0〉 − ω2
2)ψ2 −

λ2c
(1 + 4λ2abq

2
2)
ψ
′′

2 =
〈sinϕ0〉

2
(ψ1ψ− − ψ1ψ+) (6.4)

(〈cosϕ0〉 − (ω1 + ω2)
2)ψ+ −

λ2c
(1 + λ2ab(q1 + q2)2)

ψ
′′

+ =
〈sinϕ0〉

2
ψ1ψ2 (6.5)

(〈cosϕ0〉 − (ω1 − ω2)
2)ψ− −

λ2c
(1 + λ2ab(q1 − q2)2)

ψ
′′

− =
〈sinϕ0〉

2
ψ1ψ2 (6.6)

In the case of frequency mixing we have more potential ways of tuning the system

since we can vary not only the frequencies ω1 and ω2 but the relative difference

between the two. The same is true for the q1 and q2 which can be changed by

varying the angle of the incident radiation of each input as well as the difference

between them.

6.2 Numerical results

Again using a second order multiderivative method we can numerically analyze

these equations and find the distribution of each harmonic in the JV photonic
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crystal for a wide range of input parameters.

Although we have four coupled equations in this case, we can simplify things by

making the assumption that ψ+,− � ψ1,2, i.e. the sum and difference amplitudes

are much smaller than the two input amplitudes and ignoring feedback to ψ1 and

ψ2 due to nonlinearity. This allows the nonlinear parts of (6.3) and (6.4) to be

ignored, so they can be written in the homogeneous form (6.7).

(〈cosϕ0〉 − ˜ω2
1,2)ψ1,2 −

λ2c
(1 + λ2abq

2
1,2)

ψ
′′

1,2 = 0 (6.7)

Again introducing new variables P1,2,+,− = ψ
′
1,2,+,− allows us to reduce the equa-

tions to first order. Now initial values of P and ψ at point x can be used to

calculate subsequent values using the following Taylor expansions, for which the

expressions for P
′
1,2,+,− and P

′′
1,2,+,− are given in Appendix 2.

P1,2,+,−(x+ dx) = P1,2,+,−(x) + P
′

1,2,+,−dx+ P
′′

1,2,+,−
(dx)2

2

ψ1,2,+,−(x+ dx) = ψ1,2,+,−(x) + P1,2,+,−dx+ P
′

1,2,+,−
(dx)2

2

From these simulations using the method just described the spatial distribution of

both ψ+ and ψ− can be plotted as a function of x, setting ψ+ = ψ− = 0 at x = 0.

Again we are assuming that the sum and difference waves are produced within the

crystal due to its nonlinearity. Fig. 6.2 shows the spatial distribution of the sum

and difference frequency harmonics at a shared resonance for both amplitudes ψ+

and ψ−. Both amplitudes increase steadily with increased distance through the

crystal, although it can be seen that the period of oscillation for ψ− is larger than
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for ψ+.

Figure 6.2: Spatial distribution for the sum and difference harmonic amplitudes
ψ±(x) for q̃1 = 0.10, q̃2 = 0.20, ω1 = 1.10, ω2 = 4.47. Both the sum and difference
amplitudes ψ±(x) increase at this resonance point with increasing distance of prop-
agation through the JV photonic crystal. Taken from [102], with kind permission
of the European Physical Journal (EPJ).

In Fig. 6.3 we can see the spatial distribution for both harmonics again for the case

when we have a resonance of ψ− only, whereas ψ+ has a relatively small amplitude.

It should be noted that the spatial period of the sum and difference waves can be

altered by changing ω1 and ω2. This can be seen by comparing Fig. 6.2 with the

inset of Fig. 6.3 where there is a larger difference between the wavelengths of sum

and difference waves for a larger value of ω2.

By fixing ω1 constant and varying ω2 (and hence varying the ratio ω2/ω1), the

maximum value ψ̄± = maxψ± can be plotted as a function of ω2/ω1. All amplitudes

have been normalised by the amplitude of the largest peak and plotted on a log
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Figure 6.3: Spatial distribution for the sum and difference harmonic amplitudes
ψ±(x) when q̃1 = 0.10, q̃2 = 0.20, ω1 = 1.10, ω2 = 6.67. Here the distribution
of the sum and difference frequencies are plotted where there is a resonance of
the difference frequency harmonic (red) but no resonance for the sum frequency
harmonic (blue). The diagram inset shows the oscillation of ψ+ for a smaller spatial
interval. Taken from [102], with kind permission of the European Physical Journal
(EPJ).

scale which gives much clearer comparison between peaks of different magnitude.

All q values have been normalised by the characteristic value qmax = 0.3π/s, so we

have a dimensionless y-axis wavevector q̃1,2 = q1,2/qmax. The continuous limit of

sine-Gordon equations used here requires that q̃ � 1.
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Figure 6.4: Resonances for the maximum sum harmonic amplitude ψ̄+ plotted
on a log10 scale and normalised by the maximum resonance. q̃1 = q̃2 = 0.15,
ω1 = 1.10. Resonances are roughly equally spaced but varying in amplitude. In
this case ψ̄− � ψ̄+ for all values of ω2 so there are no resonances for the difference
amplitude ψ̄−(ω2). The largest resonance for ψ̄+(ω2) is at ω2/ω1 = 1.14.

We can see in Fig. 6.4 a large number of resonances when the ratio ω2/ω1 has

certain values for which ψ̄+ increases by at least an order of magnitude, the largest

resonance occurs at ω2/ω1 = 1.14. Fig. 6.5 displays the same results but for

different values of q̃1 and q̃2, showing that the largest resonance in this case is at

ω2/ω1 = 3.11. It’s clear that the largest amplitude resonance can be shifted over

a large frequency range by a small change in q̃1 and q̃2.
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Figure 6.5: Resonances for sum harmonic amplitude ψ̄+(ω2) plotted on a log scale
when q̃1 = 0.10, q̃2 = 0.20, ω1 = 1.10. The resonance marked by the arrow at
ω2/ω1 = 4.47 is shared by the difference amplitude ψ̄−(ω2) (see Fig. 6.6), the
largest resonance however is at ω2/ω1 = 3.11.

Figure 6.6: Resonances for the maximum difference harmonic amplitude ψ̄−(ω2)
plotted on a log10 scale when q̃1 = 0.10, q̃2 = 0.20, ω1 = 1.10. The resonance at
ω2/ω1 = 4.47 is shared by the sum amplitude ψ̄+(ω2) in Fig. 6.5.
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Fig. 6.6 shows a series of resonances for ψ̄− when this amplitude is strongly

enhanced for specific values of ω2/ω1, in this case we have one large resonance at

ω2 ≈ ω1 and a series of smaller resonances for higher values of ω2. The parameters

used in this case are the same as Fig. 6.5. It can be seen that some of these

resonances are shared by sum and difference harmonics as was shown in Fig. 6.2.

Others are unique to either ψ̄+ or ψ̄−, as was the case for the spatial distribution

plotted in Fig. 6.3 which corresponds to the marked resonance at ω2/ω1 = 6.67 in

Fig. 6.6.

As with the second harmonic we can investigate the effect of changing q̃1,2. When

keeping the difference (q̃1 − q̃2) fixed we can vary the sum (q̃1 + q̃2) as shown in

Fig. 6.7 for the same shared resonance of ψ+ and ψ− shown in both Fig. 6.5 and

Fig. 6.6 for the ratio ω2/ω1 = 4.47. It can be seen in Fig. 6.7 that increasing the

sum (q̃1 + q̃2) lowers the frequency ω2/ω1 of this resonance.
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Figure 6.7: The dependence of the resonance frequency ωr2 on the sum (q̃1 + q̃2)
of y-components of wave vectors of the input waves. All other parameters are
kept constant: ω1 = 1.10, (q̃1 − q̃2) = 0.1. The resonance frequency ωr2 decreasing
with increasing (q̃1 + q̃2) indicates the decay of resonance frequency when incident
angles of input waves become simultaneously larger. Taken from [102], with kind
permission of the European Physical Journal (EPJ).

Likewise we can fix the sum (q̃1 + q̃2) and vary the difference (q̃1− q̃2) for the same

resonance at ω2/ω1 = 4.47 which is shown in Fig. 6.8. Increasing the difference

(q̃1 + q̃2) moves the resonances to a higher value of ω2/ω1. It appears that the

resonance frequency ‘diverges’ as q̃1 gets close to zero.
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Figure 6.8: The dependence of the resonance frequency ωr2 on the difference (q̃1−q̃2)
of y-components of wave vectors of the input waves. All other parameters are kept
constant: ω1 = 1.10, (q̃1 + q̃2) = 0.3. The resonance frequency ωr2 growing with
increasing (q̃1− q̃2) indicates the fast enhancement of resonance frequency with an
increase of the relative angle between input waves. Taken from [102], with kind
permission of the European Physical Journal (EPJ).

6.3 Origin of sum and difference resonances

As in Chapter 4 we can attempt to describe the resonances seen with an analytical

approach similar to the one used there. We can consider weak input waves with

small amplitudes a � 1. The right hand sides of Eq. (6.5) and Eq. (6.6) are

proportional to |ψ1ψ2| ∝ a2. Since the nonlinear coupling in Eq. (6.3) and Eq.

(6.4) is roughly |ψ1,2ψ+,−| ∝ a3, which is an order of magnitude smaller than

|ψ+ψ−| ∝ a2.

Following this we can ignore the nonlinear coupling in Eq. (4.4) and Eq. (4.5) by

only approximating to second order with respect to a, giving us two linear and two
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nonlinear equations which are decoupled from each other.

(〈cosϕ0〉 − ω1
2)ψ1 −

λ2c
(1 + λ2abq

2
1)
ψ
′′

1 = 0, (6.8)

(〈cosϕ0〉 − ω2
2)ψ2 −

λ2c
(1 + 4λ2abq

2
2)
ψ
′′

2 = 0, (6.9)

(〈cosϕ0〉 − (ω1 + ω2)
2)ψ+ −

λ2c
(1 + λ2ab(q1 + q2)2)

ψ
′′

+ =
〈sinϕ0〉

2
ψ1ψ2, (6.10)

(〈cosϕ0〉 − (ω1 − ω2)
2)ψ− −

λ2c
(1 + λ2ab(q1 − q2)2)

ψ
′′

− =
〈sinϕ0〉

2
ψ1ψ2. (6.11)

The nonlinear right hand sides of Eq. (6.10) and Eq. (6.11) can be thought of

as the driving ‘forces’ of the system induced by the inputs ψ1 and ψ2. The linear

solutions here are denoted by ψL1 and ψL2. The spectrum of these waves was

already calculated in Chapter 4. It should be noted that here ψL2 refers to the

linear amplitude of the second input. This is in contrast to Chapter 4, where ψL2

was the linear amplitude of the second harmonic.

(〈cosϕ0〉 − (ω1 + ω2)
2)ψL+ −

λ2c
(1 + λ2ab(q1 + q2)2)

ψ
′′

L+ = 0, (6.12)

(〈cosϕ0〉 − (ω1 − ω2)
2)ψL− −

λ2c
(1 + λ2ab(q1 − q2)2)

ψ
′′

L− = 0. (6.13)

Again separating the linear solutions ψL± from the nonlinear amplitudes A± for

sum and difference harmonics, we can write the solution as

ψ±(x) = A±(x)ψL±(x). (6.14)
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An equation can be derived for P± = A
′
±, reducing the equation to a first order

differential equation with variable coefficients:

P
′

±ψL±+ 2P±ψL± = F±, (6.15)

where the driving ‘force’ F± is given by

F± = −(q1 + q2)
2

2γ2
〈sinϕ0〉ψL1ψL2.

The complementary function for Eq. (6.15) can be given by

P =
C±
ψ2
L±
,

so using the method of variational constants [100], introducing an x dependence

in the constant C, we can solve Eq. (6.15) using a substitution of the form Eq.

(6.16):

P =
C±(x)

ψ2
L±

. (6.16)

This gives an expression for C± which can be written as:

C
′
= F±ψL±. (6.17)

Now we apply the usual boundary condition that C±(x = 0) = 0 so the electric

and magnetic fields of the sum and difference harmonics are zero at the surface of

the crystal. Integrating Eq. (6.17), also making use of Eq. (6.16) we can derive:
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P±(x) =
1

ψ2
L±(x)

∫ x

0

dx̃F±(x̃)ψL±(x̃).

Now also using Eq. (6.14), we can derive a final expression for ψ±(x)

ψ±(x) = ψL±(x)

∫ x

0

dx̃

ψ2
L±(x̃)

∫ x̃

0

d˜̃xF±(˜̃x)ψL±(˜̃x). (6.18)

It can be concluded from this analysis that resonances for the sum and difference

amplitudes are displayed at the maximum value of the integral of F±ψL±. This

condition occurs when both F± and ψL± have the same spatial period, leading

to constructive interference and a larger overall amplitude. Knowing the linear

solutions ψL1, ψL2 and ψL± allows the solutions for ψ± to be calculated using a

step approximation for both 〈cosϕ0〉 and 〈sinϕ0〉.
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Chapter 7

Conclusions

7.1 Summary

The work studied in this thesis on the second harmonic, third harmonic and har-

monic mixing all shows that the Josephson-vortex photonic crystal can be poten-

tially very useful as a nonlinear THz device and can increase the frequency range

reachable by tuneable THz frequency emitters, detectors and filters. The frequency

ranges of the crystal can be readily tuned by varying the applied magnetic field

and by adjusting the orientation of the layered superconductor with respect to the

incoming THz waves.

The equations derived here for these nonlinear cases take the form of a Schrödinger

equation for THz waves with an effective mass in the JV photonic crystal and

moving under the ‘potential’ of the Josephson vortices. This helps illustrate how

nonlinear waves can have particle like behaviour. It should be stated that the

vortices in the JV photonic crystal allow much more efficient control of THz waves

due to nonlinearity. Layered superconductors with no applied magnetic field and
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hence no vortices will have an odd-like nonlinearity which will not allow for second

harmonic generation (or any other even harmonic). The frequency mixing process

in Chapter 6 is also based on the second order nonlinearity of the JV photonic

crystal.

With a single frequency input to the JV photonic crystal, we can see resonances for

the second and third harmonic amplitudes which are enhanced by several orders of

magnitude for these input frequencies. The second harmonic resonance frequencies

are also shared with the third harmonic, although the third harmonic amplitudes

in this case are several orders of magnitude smaller. The third harmonic also

displays extra resonances during which the third harmonic amplitude can exceed

that of the second harmonic by an order of magnitude.

When inputting two discrete frequencies ω1 and ω2 to the JV photonic crystal

we can see resonances again for specific values of the ratio ω2/ω1. The sum and

difference resonances displayed in Chapter 6 show that the JV photonic crystal

can give a high degree of control over the frequencies of JPWs produced within it

when a two frequency THz input is allowed to propagate.

For both the second harmonic and frequency mixing harmonics, the resonances

can be described by the resonance condition where the driving radiation has the

same period as the linear oscillations in the crystal. For the second harmonic we

see resonances where the condition k2 = 2k1 is met for wavevectors k1 and k2 for

the first and second harmonic respectively. The second harmonic resonance ap-

proximation well matches the nonlinear increase of the second harmonic amplitude

close to resonance.

The equations used in this thesis neglect damping of JPWs which is valid only for

samples thinner than around 0.3mm (the skin depth), within which damping can be
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considered negligible at low enough temperatures. We also neglect the capacitive

coupling between the superconducting layers which for layered superconductors

has shown to be much weaker than the inductive coupling considered here.

The theoretical work presented in this thesis could have a practical application in

helping to bridge the THz gap with compact and controllable devices since the JV

photonic crystal offers a high level of control over THz waves. This could have

application in compact and readily tunable THz filters and THz waveguides. The

work on second harmonic generation in the JV photonic crystal has been published

in the Physical Review B [101] and was presented at CMMP 2012 (Condensed

Matter and Materials Physics conference), in Edinburgh. A paper on frequency

mixing has been accepted for publication in the European Physical Journal B [102].

7.2 Further research

There is much potential for further research in the area of nonlinearity in the

Josephson-vortex photonic crystal. It would be interesting to study the effect of

the motion of the Josephson-vortex lattice on the harmonic generation discussed

in this thesis, which can be achieved by applying a c-axis current perpendicular to

the layers.

It has been noticed that there is a region of negative refractive index for THz

waves in layered superconductors. It would be interesting to look into how the

presence of vortices with an applied magnetic field would effect this region. This

could have applications as a superlens for THz waves which would not be subject

to the diffraction limit.
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Chapter 9

Appendix 1: Second harmonic

resonance approximation integrals

Multiplying Eq. (4.30) by Ψ′L1 and Eq. (4.31) by Ψ′L2 and averaging over one unit

cell L of the Josephson-vortex THz photonic crystal, we can derive Eq. (9.1) and

Eq. (9.2)

(
Y1,1 cos2 k1x− 2Y1,2 cos k1x sin k1x+ Y1,3 sin2 k1x

)
A′1

= − q2

2γ2
A1A2

(
Z1,1 cos2 k1x cos k2x

−Z1,2 cos k1x sin k1x cos k2x+ Z1,3 sin2 k1x cos k2x

−Z1,4 cos2 k1x sin k2x+ Z1,5 sin k1x cos k1x sin k2x

−Z1,6 sin2 k1x sin k2x

)
,

(9.1)
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(
Y2,1 cos2 k2x− 2Y2,2 cos k2x sin k2x+ Y2,3 sin2 k2x

)
A′1

= − q
2

γ2
A2

1

(
Z2,1 cos2 k1x cos k2x

−Z2,2 cos k1x sin k1x cos k2x+ Z2,3 sin2 k1x cos k2x

−Z2,4 cos2 k1x sin k2x+ Z2,5 cos k1x sin k1x sin k2x

−Z2,6 sin2 k1x sin k2x

)
,

(9.2)

where the coefficients are given by the following integrals

Yj,1 =
1

L

∫ L

0

(u′j − vjkj)2dx,

Yj,2 =
1

L

∫ L

0

(u′j − vjkj)(v′j + kjuj)dx,

Yj,3 =
1

L

∫ L

0

(v′j + kjuj)
2dx,

Z1,1 =
1

L

∫ L

0

〈sinϕ0〉(u′1 − v1k1)u1u2dx,

Z1,2 =
1

L

∫ L

0

〈sinϕ0〉[(u′1 − k1v1)v1u2 + (v′1 + k1u1)u1u2]dx,

Z1,3 =
1

L

∫ L

0

〈sinϕ0〉(v′1 + k1u1)v1u2dx,

Z1,4 =
1

L

∫ L

0

〈sinϕ0〉(u′1 − k1v1)u1v2dx,

Z1,5 =
1

L

∫ L

0

〈sinϕ0〉[(u′1 − k1v1)v1v2 + (v′1 + k1u1)u1v2]dx,

Z1,6 =
1

L

∫ L

0

〈sinϕ0〉(v′1 + k1u1)v1v2dx,
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Z2,1 =
1

L

∫ L

0

〈sinϕ0〉(u′2 − v2k2)u21dx,

Z2,2 =
2

L

∫ L

0

〈sinϕ0〉(u′2 − k2v2)u1v1]dx,

Z2,3 =
1

L

∫ L

0

〈sinϕ0〉(u′2 − k2v2)v21dx,

Z2,4 =
1

L

∫ L

0

〈sinϕ0〉(v′2 + k2u2)u
2
1dx,

Z2,5 =
2

L

∫ L

0

〈sinϕ0〉(v′2 + k2u2)v1u1dx,

Z2,6 =
1

L

∫ L

0

〈sinϕ0〉(v′2 + k2u2)v
2
1dx.

Now we can assume that the amplitudes A1 and A2 vary slowly also on scales of

the order of the wave length of the first and the second harmonics, thus we can

also average the derived equations on the scale of L > max(2π/k1, 2π/k2). Due to

fast oscillations of cos k1,2x and sin k1,2x, this averaging results in trivial equations

A′1 = A′3 = 0 for all k1 and k2 apart of resonance points k2 = 2k1 where the

coupling of the first and the second harmonics are most efficient. At the resonance

point k2 = 2k1 we obtain:

(
Y1,1
2

+
Y1,3
2

)
A′1 = − q2

2γ2
A1A2

(
Z1,1

4
− Z1,3

4
+
Z1,5

4

)
,

(9.3)

(
Y2,1
2

+
Y2,3
2

)
A′1 = − q

2

γ2
A2

1

(
Z2,1

4
− Z2,3

4
+
Z2,5

4

)
.

(9.4)
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The approach discussed above also allows analyzing spatial distribution of har-

monics near the resonance δk = 2k1 − k2, |δk|/k2 � 1. In this case we have to

assume that oscillations cos δkx and sin δkx are slow and keep the corresponding

terms in (9.1,9.2). All other spatial oscillations can be averaged out. As a result

we derive:

(Y1,1 + Y1,3)A
′
1 = − q2

4γ2
A1A2

[
(Z1,1 − Z1,3 + Z1,5) cos δkx

+ (−Z1,2 + Z1,4 + Z1,6) sin δkx

]
, (9.5)

(Y2,1 + Y2,3)A
′
1 = − q2

2γ2
A1A2

[
(Z2,1 − Z2,3 + Z2,5) cos δkx

+ (−Z2,2 + Z2,4 + Z2,6) sin δkx

]
. (9.6)

The above equations can be easily rewritten in the form presented in Section 4.5.
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Chapter 10

Appendix 2: Expressions for

numerical derivatives

For the third harmonic numerical method discussed in Section 5.2, first derivatives

are given by

P
′

1 =
4l20q

2

habγ2

[
(〈cosϕ0〉 − ω2)ψ1 −

〈sinϕ0〉
2

ψ1ψ2 −
〈cosϕ0〉

8
ψ3
1

]
,

P
′

2 =
16l20q

2

habγ2

[
(〈cosϕ0〉 − 4ω2)ψ2 −

〈sinϕ0〉
4

ψ2
1

]
,

P
′

3 =
36l20q

2

habγ2

[
(〈cosϕ0〉 − 9ω2)ψ3 −

〈sinϕ0〉
2

ψ1ψ2 −
〈cosϕ0〉

24
ψ3
1

]
.

Second derivatives are given by
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P
′′

1 =
4l20q

2

habγ2


〈cosϕ0〉 − ω2)P1 + 〈cosϕ0〉

′
(ψ1 + 1

8
ψ3
1)−

〈sinϕ0〉
2

(P1ψ2 + P2ψ1)− 〈sinϕ0〉
2

′

(ψ1ψ2)−

〈cosϕ0〉
(
3
8
P1ψ

2
1

)
 ,

P
′′

2 =
16l20q

2

habγ2

 〈cosϕ0〉 − 4ω2)P2 + 〈cosϕ0〉
′
ψ2−

〈sinϕ0〉
2

(P1ψ1)− 〈sinϕ0〉
4

′

ψ2
1

 ,

P
′′

3 =
36l20q

2

habγ2


〈cosϕ0〉 − 9ω2)P3 + 〈cosϕ0〉

′
(ψ3 + 1

24
ψ3
1)−

〈sinϕ0〉
2

(ψ1P2 + ψ2P1)− 〈sinϕ0〉
2

′

(ψ1ψ2)−

〈cosϕ0〉( 1
24
ψ3
1)

 .

For the sum and difference numerical method discussed in Section 6.2 the first

derivatives are given by

dψ1,2,+,− = P1,2,+,−dx,

P
′

1,2 =
q2

γ2

[
(〈cosϕ0〉 − ˜ω2

1,2)ψ1,2

]
, (10.1)

P
′

+ =
(q1 + q2)

2

γ2

[
(〈cosϕ0〉 − ˜(ω1 + ω2)2)ψ+ −

〈sinϕ0〉
2

ψ1ψ2

]
, (10.2)

P
′

− =
(q1 − q2)2

γ2

[
(〈cosϕ0〉 − ˜(ω1 − ω2)2)ψ− −

〈sinϕ0〉
2

ψ1ψ2

]
. (10.3)

Second derivatives are given by
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P
′′

1,2 =
q2

γ2

[
(〈cosϕ0〉 − ˜ω2

1,2)P1,2 + 〈cosϕ0〉
′
ψ1,2

]
, (10.4)

P
′′

+ =
(q1 + q2)

2

γ2

 〈cosϕ0〉 − ˜(ω1 + ω2)2)P+ + 〈cosϕ0〉ψ+

− 〈sinϕ0〉
2

(ψ1P2 + P1ψ2)− 〈sinϕ0〉
′

2
ψ1ψ2

 , (10.5)

P
′′

− =
(q1 − q2)2

γ2

 〈cosϕ0〉 − ˜(ω1 − ω2)2)P− + 〈cosϕ0〉ψ−

− 〈sinϕ0〉
2

(ψ1P2 + P1ψ2)− 〈sinϕ0〉
′

2
ψ1ψ2

 . (10.6)
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