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Abstract 

Object recognition requires dynamic transformations of low-level visual inputs to complex 

semantic representations. While this process depends on the ventral visual pathway (VVP), 

we lack an incremental account from low-level inputs to semantic representations, and the 

mechanistic details of these dynamics. Here we combine computational models of vision with 

semantics, and test the output of the incremental model against patterns of neural oscillations 

recorded with MEG in humans. Representational Similarity Analysis showed visual information 

was represented in low-frequency activity activity throughout the VVP, and semantic 

information was represented in theta activity. Furthermore, directed connectivity showed 

visual information travels through feedforward connections, while visual information is 

transformed into semantic representations through feedforward and feedback activity, 

centered on the anterior temporal lobe. Our research highlights that the complex 

transformations between visual and semantic information is driven by feedforward and 

recurrent dynamics resulting in object-specific semantics. 

 

 

Introduction 

Visual object recognition requires dynamic transformations of information from low-level visual 

inputs to higher-level visual properties and ultimately complex semantic representations. 

These processes rely on the ventral visual pathway (VVP) from the occipital lobe along the 

ventral surface of the temporal lobe (Kravitz et al., 2013), with the perirhinal cortex (PRC) 

sitting at the apex of the pathway (Barense et al., 2012; Bussey and Saksida, 2002; Clarke 

and Tyler, 2014; Cowell et al., 2010; Taylor et al., 2006; Tyler et al., 2013). Along the VVP, 

object representations become increasingly complex and abstracted from their inputs, such 

that higher-level visual properties are coded in LOC and posterior IT that show object 

invariance (DiCarlo et al., 2012; Kravitz et al., 2013), alongside conceptual properties of 

objects that are sufficient to distinguish between different superordinate categories (Tyler et 

al., 2013). In contrast, object-specific semantic representations are seen in the perirhinal 

cortex, at the most anterior part of the VVP, which is hypothesised to form complex 

conjunctions of properties from more posterior regions to enable fine-grained distinctions 

between conceptually similar objects (Barense et al., 2012; Bussey and Saksida, 2002; Clarke 

and Tyler, 2014; Cowell et al., 2010; Kivisaari et al., 2012; Tyler et al., 2004, 2013). Yet this 

view of recognition - where both activity and the complexity of object information progresses 

along the posterior to anterior axis in the VVP - is fundamentally incomplete as it does not take 

into account the temporal dynamics of feedforward and feedback processes and their 

interactions.  

 

The brain’s anatomical structure suggests that complex interactions between bottom-up and 

top-down processes must be a key part of object processing, as demonstrated by the 

abundance of lateral and feedback anatomical connections within the VVP and beyond 

(Bullier, 2001; Lamme and Roelfsema, 2000). Research using time-resolved imaging methods 

have shown that both feedforward and recurrent dynamics in the VVP underpin object 

representations, where visual inputs activate semantic information within the first 150 ms, and 

object-specific semantic representations emerge beyond 200 ms supported by recurrent 

activity between the ATL and posterior VVP (Chan et al., 2011; Clarke et al., 2011, 2013, 

2015; Poch et al., 2015; Schendan and Maher, 2009).  
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While this research provides spatial and temporal signatures of the fundamental aspects of 

recognition – namely visual and semantic processing - two important limitations remain. First, 

research tends to focus on three aspects of objects – low-level visual properties, superordinate 

category information (e.g. animals, tools, animate/inanimate) and object-specific semantics 

(e.g. tiger, hammer). This paints a compartmentalised picture that fails to capture the 

incremental transitions whereby vision seamlessly activates meaning. Second, while there is 

increasing knowledge of the oscillatory mechanisms underpinning basic visual processing 

(Jensen et al., 2014; Tallon-Baudry and Bertrand, 1999), models of how visual inputs activate 

meaning lack such detail. Here, we overcome these limitations by combining current 

computational models of vision with a model of semantics, to obtain quantifiable estimates of 

the incremental representations from low-level visual inputs to complex semantic 

representations. This model is then tested against neural activity using Representational 

Similarity Analysis (RSA) (Kriegeskorte et al., 2008; Nili et al., 2014) to reveal how oscillatory 

activity along the VVP codes for visual and semantic object properties. 

 

Deep neural networks (DNNs) have proved highly successful for vision, both to provide an 

engineering solution to labelling objects (Krizhevsky et al., 2012) and to map the outputs from 

the DNN to brain representations of objects in space and time (Cichy et al., 2014, 2016; 

Devereux et al., 2018; Güçlü and Gerven, 2015; Seeliger et al., 2017). DNNs for vision are 

composed of multiple layers, and as the layers progress, the nodes become sensitive to more 

complex, higher-level visual image features in a similar progression to the human ventral 

visual pathway (Cichy et al., 2014, 2016; Devereux et al., 2018; Güçlü and Gerven, 2015). 

However, current DNNs tell us little about an object’s semantic representation. While visual 

DNNs can provide accurate labels for images, the output layers do not capture how different 

objects are related in meaning. This is revealed by recent fMRI research, showing that while 

DNNs explain visual processes in the posterior ventral temporal cortex (pVTC), additional 

semantic computational models are required to capture the semantic  information about object 

representations in the pVTC and PRC (Devereux et al., 2018). This work used a recurrent 

attractor network (AN) for object semantics, as ANs have been shown to capture how objects 

semantically relate to one another (Cree et al., 1999, 2006; Devereux et al., 2015). This occurs 

because the activation across the nodes in the model capture the activation of different 

semantic features (such as ‘is round’, ‘has a handle’, ‘is thrown’, etc). Further, the dynamics 

of how these nodes become activated mirrors both behavioural responses and MEG time-

courses during object recognition (Clarke et al., 2013; Devereux et al., 2015; Randall et al., 

2004). Together, the DNN and AN provide complementary aspects of object recognition. As 

in Devereux et al (2018), by using the output of the visual DNN as input into the semantic AN, 

we further provide a potential route by which visual representations can directly activate 

semantic knowledge. Most importantly, however, combining the DNN and AN gives us a 

quantifiable computational approach that models the incremental visual and semantic 

properties of objects, from low-level vision to high level semantics. This approach can be 

combined with RSA for dynamic measures of brain activity to show how different types of 

visual and semantic information are coded in dynamic patterns of brain activity along the VVP. 

 

The brain activity we focus on here are neural oscillations. Oscillations are a ubiquitous 

property of the brain, and are known to be modulated by various aspects of vision and memory 

in humans (Fell and Axmacher, 2011; Hanslmayr et al., 2012; Helfrich and Knight, 2016; 

Jensen et al., 2014; Watrous et al., 2015a). Recent studies have begun to show how the 

ongoing phase of an oscillation can be used to decode specific stimuli (Kayser et al., 2012; 
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Lopour et al., 2013; Michelmann et al., 2016; Montemurro et al., 2008; Ng et al., 2013; Schyns 

et al., 2011; Staudigl et al., 2015; Turesson et al., 2012; Watrous et al., 2015b). These studies 

have shown that frequency-specific activity can be used to decode the specific features of 

visual objects, or object categories, suggesting that oscillatory phase could provide a 

mechanism for encoding stimulus information within a region. Further, oscillations may help 

to coordinate the activity between regions in the VVP enabling object information to be 

transformed over space and time as meaning is accessed from vision.  

 

Here, we combine RSA with neural oscillations and computational models, that could provide 

an important advance in determining the dynamic flow of different types of object information 

during recognition – both in terms of how different regions represent visual and semantic 

information and how information is transformed across regions. To achieve this, we recorded 

MEG while participants viewed a large set of common objects from diverse superordinate 

categories. The combined DNN and AN models provided predictions for how objects should 

be similar to one another, and these predictions were tested against the MEG data using RSA 

(Figure 1). The MEG signals were source localized, and single object oscillatory phase 

patterns were extracted from 5 regions of interest in the VVP. Based on these phase patterns 

across objects, we could determine how similar objects were to each other within each ROI, 

and track this over time and frequency. RSA then allows us to test the degree to which the 

object similarity according to the computational model is reflected in oscillatory phase signals 

over space, time and frequency. We predict both a spatial and temporal hierarchy in the VVP 

between visual object information and semantics. Crucially, recurrent activity will be 

associated with the activation of semantic object information that will also depend on the 

coordinated activity within the VVP. Whilst visual object properties are predicted in theta and 

alpha (Kayser et al., 2012; Montemurro et al., 2008; VanRullen et al., 2014), semantic 

information may be more associated with theta activity (Halgren et al., 2015) and gamma 

activity (Mollo et al., 2017; Supp et al., 2007). 

 

 

Methods 
We re-analysed MEG data reported in Clarke et al., (2015), and thus only summarise the 

main aspects of study design here. 

 

Participants & procedure 

Fourteen participants took part in the study. Two participants were excluded from the analysis 

due to poor source reconstruction results (failure to show occipital activity ~100 ms after onset 

of object) leaving twelve participants in the analysis. Participants performed a basic-level 

naming task (e.g. ‘tiger’) with 302 common objects from a diverse range of superordinate 

categories including animals, clothing, food, musical instruments, tools and vehicles. All 

objects were presented in color as single objects on a white background. Each trial began with 

a black fixation cross on a white background for 500 ms before the object was shown for 500 

ms, and followed by a blank screen lasting between 2400 and 2700 ms. The order of stimuli 

was pseudo-randomized. 
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Figure 1. Representational similarity analysis (RSA) using computational models and 

oscillations. (A). The combined visual DNN and semantic AN models the low-level visual 

properties of the input, and higher-level image properties that increase in complexity across 

layers c1 to fc7. The visual properties in fc7 then map onto a recurrent AN that activates the 

semantic features associated with the input. In our analyses, we combined layers of the DNN 

into three visual model RDMs, and combined the AN into two semantic model RDMs capturing 

increasingly specific visual and semantic information. (B). Correlations between the different 

visual and semantic model RDMs. (C). RSA analysis of time-frequency data. Spatio-temporal 

activity patterns are extracted from an ROI for each object. Time-frequency phase is calculated 

for each ROI, and RDMs are created for each point in time and for each frequency. Each RDM 

is then correlated with each RDM from the computational model to test when and at what 

frequency different object properties are represented in oscillatory phase patterns. The 

procedure is then repeated for all ROIs. 

 
 

MEG/MRI recording 

Continuous MEG data were recorded using a whole-head 306 channel (102 magnetometers, 

204 planar gradiometers) Vector-view system (Elekta Neuromag, Helsinki, Finland) located at 

the MRC Cognition and Brain Sciences Unit, Cambridge, UK. Eye movements and blinks were 

monitored with electro-oculogram (EOG) electrodes placed around the eyes, and five Head-

Position Indicator (HPI) coils were used to record the head position (every 200 ms) within the 

MEG helmet. The participants’ head shape was digitally recorded using a 3D digitizer (Fastrak 

Polhemus Inc., Colchester, VA), along with the positions of the EOG electrodes, HPI coils, 

and fiducial points. MEG signals were recorded at a sampling rate of 1000 Hz, with a band-

pass filter from 0.03 to 125 Hz. To facilitate source reconstruction, 1 mm3 T1-weighted 

MPRAGE scans were acquired during a separate session with a Siemens 3T Tim Trio scanner 
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(Siemens Medical Solutions, Camberley, UK) located at the MRC Cognition and Brain 

Sciences Unit, Cambridge, UK. 

 

MEG preprocessing 

Initial processing of the raw data used MaxFilter version 2.0 (Elektra-Neuromag) to detect bad 

channels that were subsequently reconstructed by interpolating neighboring channels. The 

temporal extension of the signal-space separation technique was applied to the data every 10 

seconds in order to segregate the signals originating from within the participants’ head from 

those generated by external sources of noise. A correlation limit of 0.6 was used as this has 

been shown to additionally remove noise from close to the head, as produced during speech 

(Medvedovsky et al., 2009), and head movement compensation was applied. The resulting 

MEG data were low-pass filtered at 200 Hz in forward and reverse directions using a 5th order 

Butterworth digital filter, high-pass filtered at 0.1 Hz using a 4th order butterworth filter and 

residual line noise was removed with a 5th order butterworth stop-band filter between 48 and 

52 Hz. Data were epoched from -1.5 to 2 seconds, and downsampled to 500 Hz using SPM12 

(Wellcome Institute of Imaging Neuroscience, London, UK). 

 

Independent components analysis (ICA) was used to remove artefactual signals, using runica 

implemented in EEGLab (Delorme and Makeig, 2004) and SASICA (Chaumon et al., 2015). 

ICA was performed separately for magnetometers and gradiometers with 60 components for 

each. Components of the data that showed a Pearson’s correlation greater 0.4 with either 

EOG channel were removed from the data, as were components correlated with the ECG 

recording. SASICA and FASTER were additionally used to identify components related to 

muscle and high-frequency artefacts, and components that showed a rising profile of evoked 

activity between 200 ms and 1 second were removed (these characterise speech artefacts; 

mean naming latency 991 ms, SD = 109 ms). All components were visually inspected to 

confirm removal, as recommended (Chaumon et al., 2015). After ICA, a baseline correction 

was applied to all trials using data from -500 to 0 ms. Items that were incorrectly named were 

excluded, where an incorrect name was defined as a response that did not match the correct 

concept. 

 

Source localisation 

Source localisation of MEG signals used a minimum-norm procedure applied in SPM12.  First, 

the participants MRI images were segmented and spatially normalized to an MNI template 

brain. A template cortical mesh with 8,196 vertices was inverse normalized to the individual’s 

specific MRI space. MEG sensor locations were coregistered to MRI space using the fiducial 

points and digitized head-points obtained during acquisition. The forward model was created 

using the single shell option to calculate the lead-fields for the sources oriented normal to the 

cortical surface (including a leadfield correction following ICA; Hipp and Siegel, 2015). The 

data from both magnetometers and gradiometers were inverted together using the group 

inversion approach to estimate activity at each cortical vertex using a minimum norm solution 

(IID). A frequency window of 0 to 150 Hz was specified and no hanning window was applied. 

 

Representational Similarity Analysis (RSA) 

RSA was used to compare the similarity/distances between objects based on computational 

models, and the similarity derived from oscillatory patterns. This requires we calculate 

representational dissimilarity matrices (RDMs) from both the computational model layers, and 

from source localised MEG signals. 
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RDMs from computational models 

The computational models used here are those that have been successfully used to describe 

the gradient of visual to semantic object representations along the VVP in fMRI (Devereux et 

al., 2018).  

 

Visual Deep Neural Network 

We used the deep neural network (DNN) model of Krievhesky et al. (2012), as implemented 

in the Caffe deep learning framework (Jia et al., 2014), and trained on the ILSVRC12 

classification dataset from ImageNet. We used the first 7 layers of the DNN, consisting of five 

convolutional layers (conv1-conv5) followed by two fully-connected layers (fc6 & fc7). The 

convolutional kernels learned in each convolutional layer correspond to filters receptive to 

particular kinds of visual input. In the first convolutional layer, the filters reflect low-level 

properties of stimuli, and include one sensitive to edges of particular spatial frequency and 

orientation, as well as filters selective for particular colour patches and colour gradients 

(Krizhevsky et al., 2012; Zeiler and Fergus, 2014). Later DNN layers are sensitive to more 

complex visual information, such as the presence of specific visual objects or object parts(e.g. 

faces of dogs, legs of dogs, eyes of birds & reptiles; see Zeiler and Fergus, 2014), irrespective 

of spatial scale, angle of view etc. We presented 627 images to the pre-trained network 

(including the 302 images presented to participants), where each image represented a 

concept listed in a large property norm corpus (Devereux et al., 2014). This produced 

activation values for all nodes in each layer of the network for each image. 

 

To create RDMs for each layer of the DNN, we first applied PCA to reduce the dimensionality 

of each layer while keeping the components that explained 100% of the variance. For 

example, fc6 has 4096 nodes, and after PCA each of the 627 object images was represented 

by a 626 length vector. This was found to dramatically improve the relationship between MEG 

signals and the DNN, which may be because the white space surrounding images was 

reduced from being represented across a large number of nodes to a few components, 

meaning the similarity between objects was focused on the areas of the images where the 

objects appeared. While the PCA improved the relationship between MEG signals and the 

DNN for objects isolated from backgrounds, this would not be expected for naturalistic images. 

Following PCA, we excluded all object activations that were not in the present study, leaving 

302. 

 

As many of the layers were highly correlated, and to reduce the number of RDMs tested, 

subsets of the 7 layers were combined. The object activation matrices were concatenated 

across layers, and the dissimilarity between network activity for different object images was 

calculated as 1 - Pearson’s correlation. This was applied to conv1, concatenated activations 

from conv2-5, and concatenated activations from fc6 and 7, which are referred to as visual-

layer 1, 2 and 3 respectively. A model RDM was also created based on concatenated data 

from all layers of the DNN. 

 

Semantic Attractor Network 

DNNs have proven effective in labelling object images in complex contexts. However visual 

DNNs do not capture object semantics, because although they can find the correct labels for 

images, they do not capture how different objects are semantically related to one another (e.g. 

that a dog and cat are related in meaning), and only takes into account the similarity of their 
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visual properties, rather than also taking into account non-visual and functional information 

(Devereux et al., 2018). To provide one potential route for the relationship between higher-

level visual properties and semantic properties, we use the output from the DNN as input to 

an attractor network (AN) model of semantics. 

 

Our semantic knowledge of concrete concepts can be captured by distributed semantic feature 

models (Cree and McRae, 2003; Rogers and McClelland, 2004; Taylor et al., 2011; Tyler and 

Moss, 2001), where each concept is represented by a set of features – e.g. is shiny, has a 

handle, used for chopping are features of a knife from the property norming corpus of 

Devereux et al., (2014). Based on semantic features, the similarity between concepts is 

accounted for on the basis of the features they share, while distinctive features allow for 

differentiation between items (Taylor et al., 2011). The semantics of the 627 object concepts 

from the property norms can be represented across 2,469 semantic features, and in the AN 

these correspond to the 2,469 nodes. The AN was based on Cree et al. (2006), and was 

trained to activate the correct pattern of semantic features from the inputs from the DNN (full 

details in Devereux et al., 2018). The network was trained using continuous recurrent back-

propagation through time over 20 processing time-ticks. As input to the AN, we took the 

activation over the 4,096 nodes of fc7, and reduced this to 60 dimensions using SVD (Note, 

RDMs calculated on the full-dimensional fc7 and the SVD-reduced layer were highly correlated 

(Spearman’s rho = 0.98) indicating no substantial information loss). After training, over the 20 

time-ticks, the semantic features associated with the concept are gradually activated, with the 

speed of activation depending on the relationship to the visual features and the statistical 

regularities between features (i.e. whether a certain combination of features predicts the 

occurrence of another feature). Thus, early features to activate are shared features and visual 

features, followed by non-visual and distinctive features. For further implementation details 

see Cree et al (2006) and Devereux et al., (2018). 

 

Like with the visual DNN, many of the 19 layers of the AN (discounting the input layer) are 

highly correlated and so were combined. Using k-means clustering, the 19 layers could be 

described well by 2 principal groups, as shown by positive silhouette values. Clustering 

solutions with 1,3,4 or 5 groups all contained negative silhouette values showing that 2 

provided the most optimal number of clusters. After PCA, layers 1-5 were concatenated and 

layers 6-19 were concatenated. The dissimilarity between AN activity for different object 

images was calculated as 1 - Pearson’s correlation, giving an early semantic RDM and a late 

semantic RDM. An additional semantic RDM was created based on the concatenation of all 

19 layers. 

 

RDMs from time-frequency signals 

Object dissimilarity from MEG signals was based on oscillatory phase patterns from source-

localised data. Five regions of interest were specified covering locations known to be sensitive 

to visual and semantic object properties. Each ROI was specified by a coordinate and radius 

of 20 mm. The occipital pole (MNI: -10, -94, -16), left pVTC (MNI: -50, -52, -20), right pVTC 

(52, -56, -16), left ATL (MNI: -30, -6, -40) and right ATL (MNI: 30, -4, -42). Coordinates were 

defined based on local maxima of source localised activity to all objects. Within each ROI 

(defined by the center coordinate and radius), single trial activity was extracted for each vertex. 

Instantaneous phase was calculated for each trial and for every vertex using Morlet Wavelets 

using the timefreq function in EEGLAB. Phase was extracted between -700 ms and 1000 ms 

in 20 ms time steps, and between 4 and 95 Hz in 50 logarhythmically spaced frequency steps. 
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A 5-cycle wavelet was used at the lowest frequency, increasing to a 15 cycle wavelet at the 

highest. This produced a time-frequency representation (TFR) for every trial at every vertex 

location in the ROI. RDMs between object TFRs were calculated at each time/frequency point, 

using the circular distance (Berens, 2009) between vectors of phase information over space 

(vertices) and over 60 ms. 

 

For analyses at distinct frequency bands rather than at every frequency, the oscillatory RDMs 

were averaged across frequencies. The frequencies within each band were defined using 

hierarchical clustering in sensor space, with the aim of allowing the data to define the 

boundaries between different bands (also see Crivelli-Decker et al., 2018). TFRs were 

computed for each MEG sensor which were averaged across all trials and participants to 

produce a grand-average for each sensor. A vector was created for each frequency that 

included all time-points and sensors concatenated, before hierarchical clustering of 

frequencies using correlation as the distance measure. The resulting distances were 

visualised as a dendrogram to define the boundaries of the different bands. This resulted in 

theta (4-9 Hz), alpha (9-15 Hz), beta (16-30 Hz) and gamma (30-95 Hz). 

 

RSA statistics 

Each RDM based on oscillatory phase signals was correlated with the RDMs from the 

computational models using Spearman’s correlation (Spearman’s correlation was used to be 

consistent with prior publications using similar data and model RDMs; Clarke & Tyler, 2014; 

Devereux et al., 2018). This resulted in TFRs that captured the relationship between phase 

information and the visual and semantic network models. RSA TFRs were calculated for each 

layer, ROI and participant. Random effects analysis testing for positive RSA effects was 

conducted for each time-frequency point using one-sample t-tests against zero (alpha 0.01). 

Only positive RSA effects were tested as we are interested in when the similarity structure in 

neural signals relate to the similarity structure predicted by visual and semantic RDMs. 

 

Cluster-mass permutation testing was used to assign p-values to clusters of significant tests 

(Maris and Oostenveld, 2007), and a maximum cluster approach was used to control for 

multiple comparisons across time, frequency, ROI and model RDM (Nichols and Holmes, 

2002). For each permutation, the sign of the TFR correlations was randomly flipped for each 

participant before one-sample t-tests of the permuted data at each time and frequency point. 

To construct the null distribution for the maximum cluster approach, the same permutation 

scheme was applied to all ROIs and model RDMs, and the largest cluster (sum of above-

threshold t-values) from any ROI and models was retained for the null distribution, and 

repeated 10,000 times. The cluster p-value for each of the observed cluster in the original data 

was defined as the proportion of the 10,000 permutation cluster-masses (plus the observed 

cluster-mass) that is greater than or equal to the observed cluster-mass. Using this approach, 

we correct for the total number of statistical comparisons performed over all time-points, 

frequencies, each ROI and all model RDMs tested. 

 

Peak RSA effects 

To determine when different kinds of information were present relative to one another, we 

determined when the peak effects occurred across different regions for different visual and 

semantic RDMs. This analysis was performed for RSA effects within each frequency band, in 

addition to peak effects collapsing across frequencies. The latency of the peak was defined 

as the maximum Spearman’s correlation value between 50 and 500 ms. A latency was found 
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for each frequency band, model RDM and ROI. Linear mixed effects (LME) models were used 

to test the relationship between the peak latency, and ROI and computational model layer. 

The peak frequency analysis was based on RSA effects determined across the full frequency 

spectrum. The peak was defined as the frequency of the maximal RSA effect between 50 and 

500 ms. In both latency and frequency analyses, linear mixed effects (LME) models (using 

fitlme) were used to test the relationship between the peaks, and ROI and computational 

model layer. For visualisation, peaks are plotted as probability density functions, and using 

gramm (https://doi.org/10.5281/zenodo.59786). Finally, we did not control for the number of 

LME models performed (n=3 for temporal peaks, n = 4 for frequency peaks). 

 

Granger Causality 

Finally, we tested the causal relationships between RSA effects seen for visual and semantic 

properties and across different ROIs. Specifically, we used Granger Causality (GC) analysis 

to test if RSA time-courses in one region have a subsequent impact on RSA time-courses in 

other regions. To aid interpretability, GC analysis was applied to the RSA time-courses 

averaged across frequency bands and for the concatenated visual and concatenated semantic 

model RDMs. GC was calculated between the five ROIs and the two RSA time-courses (10 

time-series in total). Each time-series was the RSA effect between 50 and 500 ms 

concatenated across participants. Time domain GC used the multivariate granger causality 

toolbox (Barnett and Seth, 2014), with a model order of 2 (40 ms) as indicated by the AIC for 

model order estimation. To remove bias in the resulting GC values, surrogate data was used 

to estimate the bias and remove it from the GC values. The data were divided into time 

windows (of length model order) and randomly rearranged creating 5000 surrogate data sets. 

The mean GC across the surrogate data was used as an estimate of the bias and subtracted 

from the original GC values. This approach is considered to debiased the GC values (Barnett 

and Seth, 2014; Barrett et al., 2012). Granger F-tests were applied to the unbiased pairwise 

conditional GC values, and multiple comparisons correction used FDR and an alpha of 0.05 

for a total of 90 pairwise connections. 

 

Results 
Our primary goal was to test how the VVP represents increasingly complex visual and 

semantic information over time. To achieve this, we used RSA to test if the visual and semantic 

information, extracted from the computational models, was represented in spatio-temporal 

patterns of oscillatory phase from source localised MEG signals. We analysed data from five 

ROIs covering occipital, posterior ventral temporal cortex and the anterior temporal lobe (ATL), 

that are known to be primarily implicated in the processing of visual and semantic object 

properties. 

 

Time-frequency RSA (TF RSA) showed that neural patterns based on oscillatory phase had a 

significant relationship to both the visual and semantic models. The effects were concentrated 

in the first 500 ms, and seen across theta, alpha and beta frequencies (Table 1). We first 

present a brief overview of visual and semantic effects, before a more detailed follow-up 

analysis of the timing and frequencies of the effects. 

 

Visual models 

TF RSA effects were seen for all three visual models in each ROI across theta, alpha and beta 

frequencies, and strongest in the occipital ROI (Figure 2). It is predicted that early or 

https://doi.org/10.5281/zenodo.59786
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intermediate visual layers will be the best predictors of occipital responses, and more anterior 

regions will be best captured by the last visual layer. Planned contrasts showed the effects 

were significantly greater for visual-layer 2 compared to visual-layer 1 (t = 4.56, p < 0.001) 

with no difference between visual-layer 2 and 3 (t = 0.27). In higher regions along the ventral 

stream, visual-layer 3 had a significantly greater fit than both layer 2 (LpVTC: t = 4.05, p = 

0.002; RpVTC: t = 4.30, p = 0.001; LATL: t = 3.35, p = 0.006; RATL: t = 3.64, p = 0.004), and 

layer 1 (LpVTC: t = 4.90, p < 0.001; RpVTC: t = 7.00, p < 0.0001; RATL: t = 7.35, p < 0.0001) 

except in the LATL (t = 2.01, p = 0.07). These results are in line with predictions that later 

regions along the ventral stream represent more complex visual object information, that is in 

turn better captured by later layers of the visual DNN. 

 

 
Figure 2. Time-frequency RSA effects of the visual DNN. Each plot shows the Spearman’s 

correlation values between an RDM from the visual DNN and each ROI. Significant clusters 

are shown outlined in black, using a threshold of p < 0.01 at the pixel level, and p < 0.05 at 

the cluster level (corrected for all ROIs and model RDMs tested). Non-significant time-

frequency points are displayed in the background. Black line shows 0 ms. 

 

 

Semantic models 

TF RSA analysis of phase showed significant effects for both semantic models (Figure 3). 

Both the early-semantic and late-semantic models were significantly related to spatio-temporal 

phase patterns in the LATL in theta frequencies during the first 400 ms. Further, the early-

semantic model had a significantly better fit compared to the late-semantic model in LATL (t = 

2.96, p = 0.013). The early-semantic model was also significantly related to occipital phase 

patterns in theta and alpha frequencies. Finally, the late-semantic model was significantly 

related to the LpVTC in theta frequencies. These results show that semantic information about 

objects is captured through oscillatory phase patterns in the ventral stream, with the most 

prominent effects in theta in the pVTC and ATL – key regions supporting object semantic 

information over time (Clarke and Tyler, 2014; Clarke et al., 2011, 2015). 
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Figure 3. Time-frequency RSA effects of the semantic AN. Plots shows the Spearman’s 

correlation values between a semantic AN RDM and each ROI. Significant clusters are shown 

outlined in black, using a threshold of p < 0.01 at the pixel level, and p < 0.05 at the cluster 

level (corrected for all ROIs and model RDMs tested). Non-significant time-frequency points 

are displayed in the background. Black line shows 0 ms 

 

 

Representational changes over time 

Our analysis so far shows that the combined visual DNN and semantic attractor network model 

are capturing neural processes along the VVP. We next sought to determine the relative 

changes in object information over time and region. However, it is difficult to establish when 

different forms of information are present based on the onsets of significant effects, due to the 

temporal smearing wavelet convolution creates - especially at lower frequencies - and the use 

of a spatio-temporal sliding window that further contributes to a smoother pattern. Further, 

onsets can not be easily compared across different frequencies as the temporal smearing is 

greater at lower compared to higher frequencies. Therefore, to determine when different kinds 

of information are present relative to one another, we analysed when the peak effects occurred 

across different regions for different visual and semantic models. We used linear mixed effects 

(LME) models to test the relationship between the peak time of RSA effects, and the layer of 

the computational model (modelled from visual layer-1, layer-2, layer-3, early-semantics, late-

semantics) and hierarchical cortical level of the VVP (occipital, pVTC, ATL; where left and right 

hemispheres are combined). 

 

We found a significant effect of cortical level, in that later levels of the VVP had later peak RSA 

effects (Beta coefficient: 26 ms (SE = 6.7 ms), t = 3.90, p = 0.0001; Figure 4A), and a significant 

effect of computational model layer in that later layers had significantly later peaks (Beta 

coefficient: 30 ms (SE = 3.6 ms), t = 8.34, p < 0.0001; Figure 4B). Further, as shown in Figure 

4B, there was a prominent separation in the timing of visual and semantic peak effects. A 

subsequent LME model combined the data within visual and semantic models, and showed 

that semantic effects lagged visual effects by an estimated 88 ms (t = 8.12, p < 0.0001). 

 

After establishing this broad pattern where effects are later in time for higher regions of the 

VVP and for later layers of the visual-to-semantic model, we next tested for region-specific 

changes in the latency of peak RSA effects within three frequency bands that showed 

significant effects – theta, alpha and beta. Separate LME models were run for each cortical 

level of the VVP for each frequency band. Significant positive effects of model layer were seen 

in the occipital and pVTC for theta, alpha and beta, while the ATL showed significant positive 
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effects in theta and alpha (Figure 4C-E). This establishes that later layers of the combined 

computational model showed later peak RSA effects in theta, alpha and beta frequencies 

across all levels of the VVP, supporting our broad results of a temporal transition from visual 

to semantics over time in accordance with the changes seen over the successive layers of the 

computational model. 

 

 
Figure 4. Temporal peaks for the visual DNN and semantic AN RSA effects. (A). Probability 

density plot showing that the latencies of the peak RSA effects follow the hierarchical levels 

of the VVP (data combined across hemispheres and model RDMs). (B). Probability density 

plot showing that the latencies of the peak RSA effects for different model RDMs have a clear 

distinction between visual DNN and semantic AN latencies, while later model layers tend to 

have later peaks. (C-E). Mean peak latencies for different model RDMs at each hierarchical 

level for three frequency bands where significant RSA effects were present. Plots show a 

general increase in latency across the models from visual to semantic (colours match those in 

panel b). Horizontal lines indicate a significant linear relationship between latency and model 

layer. 

 

 

Representational changes over frequency 

We next tested how the peak frequency of the RSA effects changed. Using a LME model, we 

found a marginal effect of hierarchical cortical level (Beta coefficient = 2.2 Hz (SE = 1.1), t = 

1.89, p = 0.06), but not of model layer (p = 0.21). The interaction between level and model 

was trending towards significance (t = 1.95, p = 0.053). To explore the interaction, separate 

LME models were run for each hierarchical level testing for an effect of model layer. Only the 

ATL showed a significant effect of model layer, where later layers of the visual-to-semantic 

model had lower peak frequencies (Beta coefficient: -0.74 Hz, t = 2.02, p = 0.046; Figure 5). 

As shown in Figure 5, plotting the probability density across frequencies suggests semantic 

models have median peak frequency around 5-6 Hz, while visual models have peaks closer 

to 10 Hz suggesting an alpha-theta distinction between vision and semantics. 
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Figure 5. Spectral peaks for the visual DNN and semantic AN RSA effects in the anterior 

temporal lobe. Probability density plot showing that the peak frequency of RSA effects shows 

a clear distinction between visual and semantic model RDMs, where visual effects peak near 

10 Hz and semantic effects peak near 5 Hz. 

 

 

Direction of information flow 

The results presented so far show a visual to semantic trajectory through time and space, 

where effects are later in time for higher regions of the VVP, and for later layers of the visual-

to-semantic model. However, focussing solely on peak effects will not fully capture the ongoing 

dynamics, and critically, does not tell us about the connectivity relationships between regions 

or information types. To address this, we used Granger Causality (GC) analysis to test if 

representations in one region have a subsequent impact on representations in other regions. 

For example, GC with RSA time-courses allows us to test if visual information in one region 

has a Granger causal impact on subsequent visual representations in a different region, or 

whether visual representations have a Granger causal impact on subsequent semantic 

representations. GC analysis was applied to the RSA time-courses averaged across theta and 

alpha bands (this was because the effects were concentrated in these low frequencies and 

therefore reflects the dominant visual and semantic effects) to test for Granger causality 

relationships between visual representations across regions, semantic representations across 

regions, and critically, between visual and semantic representations both within and across 

regions. For this analysis, we focus on RSA effects from the combined visual and combined 

semantic RDMs (Figure 6). 

 

We first tested how visual RSA effects impact visual effects in other regions (Figure 6C). 

Significant feedforward GC was seen between the occipital region and all other regions. This 

suggests that visual representations in the occipital lobe have an impact on subsequent visual 

representations further along the VVP in accordance with feedforward models of visual 

processing. Semantic RSA effects (Figure 6D) showed significant feedforward, cross-

hemispheric and feedback connectivity, with both the left and right ATL playing prominent 

roles. Semantic effects in the LATL significantly influenced later semantic effects in more 
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posterior regions, while the RATL showed significant connectivity from bilateral pVTC. In 

addition, bidirectional connectivity was seen between the ATL regions. This shows that, in 

contrast to visual RSA connectivity, the spread of semantic effects were associated with more 

complex feedforward, feedback and cross-hemispheric connectivity. 

 

 
Figure 6. Granger causality (GC) of RSA time-courses. (A) All pairwise GC values after 

removing the common dependencies from other regions. (B) Significance of GC values, 

showing q-values (FDR corrected p-values) less than 0.05. (C-F) Images show significant GC 

of the RSA time-courses between regions. Each image shows how RSA effects in one region 

impact future RSA effects in another region. The analysis was conducted both for RSA effects 

across regions within the visual DNN or semantic AN model RDMs (left two images), and when 

the RSA effects of the visual DNN could show GC with RSA effects with the semantic AN (and 

vice versa; right two images). Significant connections shown using p < 0.05, FDR corrected. 

 

 

Crucially, we tested the relationships between visual and semantic RSA effects (Figure 6E), 

by testing if visual RSA effects in one region influenced later semantic effects in other regions 

(or the same region) and vice versa. Visual RSA effects emanating from the occipital and 

RpVTC significantly influenced semantic effects through feedforward connectivity with the 

ATL, while visual RSA effects from the occipital region also influenced later semantic effects 

in the RpVTC. The occipital visual RSA effects influenced later semantics in the occipital, while 

visual effects in the LpVTC also influenced later semantic effects in the LpVTC. Finally, visual 

RSA effects in the ATL influenced later semantic effects in the pVTC through feedback 

connectivity, an effect that was present in both hemispheres. This shows a pattern where 

feedforward visual-to-semantic transformations occur from the occipital to LATL, and along 
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the right VVP. Feedback visual-to-semantic transformations occurred from the ATL to pVTC 

bilaterally, in addition to a shifting visual-to-semantic representation within LpVTC. Lastly, 

semantic RSA effects had a significant effect on visual representations (Figure 6F) in the 

RpVTC, nd from RpVTC to LpVTC. Overall, the GC results show that feedforward processing 

in the VVP supports the dynamic processing of visual information, while combinations of 

feedforward and feedback is more central for semantics. We also highlight that visual to 

semantic information transitions engage feedforward and feedback connectivity, with the ATL 

appearing a vital region. 

 

Discussion 
In this study, we successfully combined RSA for time-frequency phase information with a 

computational architecture for visual to semantic processing. Utilising a combined visual DNN 

and semantic AN, we were able to demonstrate how the incremental aspects of visual to 

semantic processes occur in the ventral stream over time, and the underlying dynamics 

supporting this transition. We report several novel additions. First that TF RSA revealed visual 

and semantic object properties were reflected in low frequency phase activity in the VVP. As 

would be expected, spatial and temporal hierarchies were apparent, where later layers of the 

computational model showed peak effects later in time, and in later regions along the posterior 

to anterior axis. Second, we also revealed that more subtle dynamics underlie recognition, 

where feedforward connectivity supported the transfer of visual information in the VVP, and 

combined feedforward, feedback and intra-region dynamics supported the transition between 

visual and semantic information processing states. This was revealed through a novel 

application of Granger Causality to RSA time-courses. And third, our analysis suggests a novel 

hypothesis that the ATL codes visual and semantic properties through a multiplexed code. 

These results present the first detailed account of how oscillatory dynamics can support the 

emergence of meaning from visual inputs. 

 

Here we used TF RSA with oscillatory phase information, showing that low-frequency phase 

carries stimulus-specific information related to visual and semantic object properties. The 

analysis was based on phase patterns from MEG source localised data, with our results 

showing that objects with more similar properties have more similar spatio-temporal phase 

patterns in the mass signals recorded through MEG. It is believed that the phase of low-

frequency activity is suited for decoding stimulus properties for MEG, EEG and ECOG 

(Panzeri et al., 2015; Watrous et al., 2015a), supported by a number of studies showing that 

oscillatory phase carries more information about the stimulus than power (Lopour et al., 2013; 

Ng et al., 2013; Schyns et al., 2011; Staudigl et al., 2015). While not presented here, we also 

see a similar pattern with our data. While neural mass activity can be difficult to relate to the 

underlying neural activity, there is some suggestion that low-frequency phase of mass signals 

might index the timing of the underlying neural activity and its firing (Montemurro et al., 2008; 

Panzeri et al., 2015; Watrous et al., 2015a). As such, our effects based on spatiotemporal 

phase patterns may be driven by spatiotemporal activity patterns of the mass neural 

populations, and further suggests that cognitively relevant properties are coded in distributed 

neural activity patterns in space and time. However, the relative importance of a spatial or 

temporal activity patterns for object properties was not be determined in this study. 

 

Previous studies in both humans and nonhuman primates have identified category-specific 

phase coding of objects, where different object categories have different preferred phases 
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associated with neural activity (Turesson et al., 2012; Watrous et al., 2015b). Here, we go 

beyond phase dissociations between different categories, by showing that the variability in 

phase information relates to variability in the stimulus properties, and is the case for both visual 

and semantic properties. We see that low frequency phase patterns, peaking in alpha, most 

strongly relate to visual properties from the DNN and phase patterns peaking in theta relate to 

semantics. Low frequency activity over posterior regions is linked to perceptual cycles that 

structure visual processing of objects (Jensen et al., 2014; Kayser et al., 2012; VanRullen et 

al., 2014), and such low frequency phase patterns have been shown to relate to content-

specific visual information in the occipital lobe (Michelmann et al., 2016). Alpha activity is 

claimed to reflect a pulsed inhibition of cortical activity, where increases in alpha power result 

in the inhibition of a region and decreased alpha power relates to the active engagement of a 

region (Jensen and Mazaheri, 2010; Klimesch et al., 2007). Research using combined EEG 

and fMRI has further shown that occipital alpha power reductions correlated with increased 

BOLD in downstream object processing regions (Zumer et al., 2014), and so alpha activity 

could organise the flow of information through the VVP, as supported through our connectivity 

analysis (see below). However, it is also worth noting that effects of the DNN, while peaking 

in alpha, were seen across theta, alpha and beta frequencies, which may instead highlight the 

important role of low frequency oscillations for perceptual processing rather than only relating 

to alpha activity. 

 

Some of the RSA effects we observed temporally overlap with typically reported event-related 

components seen in EEG and MEG. This might suggest that our analysis is picking up on the 

phase-locked aspects of the signal (that will contribute to the event-related component), 

however, given that our analysis depends on a statistical correspondence between phase 

variability and the variability produced by the computational models, our results can not be 

driven solely by the phase-locked aspects of the signal. To illustrate, a phase-locked evoked 

response in all trials (whether produced through phase resetting or an additive model) would 

result in little variability in phase over trials, and as our RSA analysis depends on variability in 

phase angle over trials, our analysis must also be picking up non-phase-locked aspects of the 

signal. Overall, our phase-based RSA analysis is likely driven by variability in the timing of the 

underlying neural activity that we see through variability in phase patterns generated by the 

stimulus (Montemurro et al., 2008; Panzeri et al., 2015; Watrous et al., 2015a). 

 

Both alpha and theta activity are sometimes considered to have similar roles in organising 

neural activity (Jensen et al., 2014; Lisman and Jensen, 2013). Both alpha and theta activity 

are modulated by memory, but often with opposing effects (Hanslmayr et al., 2012), and our 

clustering of frequencies to generate the different bands revealed separate clusters for theta 

and alpha. Together, this suggests a functional dissociation between theta and alpha in cortex. 

Theta activity in the hippocampus and medial temporal lobes is tightly linked to long term 

memory (Fell and Axmacher, 2011; Fell et al., 2001; Halgren et al., 2015; Sederberg et al., 

2003; Staresina et al., 2012). Our theta effects for semantic object properties in the pVTC and 

ATL are consistent with intracranial recordings in humans from anterior IT and the PRC which 

show a modulation of theta activity according to the semantic category of words (Halgren et 

al., 2015), where it is further hypothesised that ATL structures aid the encoding of attributes 

in coordination with theta in the hippocampus (Fell et al., 2001; Halgren et al., 2015; Staresina 

et al., 2012). 
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One novel hypothesis from our study is that different primary rhythms may encode visual and 

semantic properties in the ATL. The concept that different frequencies code complementary 

aspects of a stimulus is known as multiplexing. Using EEG, Schyns and colleagues (2011) 

showed that posterior electrodes coded for the eyes of a face in the beta band, and the mouth 

in theta, showing that different features of a face are coded in different frequencies. In our 

study, different object features relating to vision and semantics peaked at different frequencies 

in the ATL - alpha and theta. Recently, the PRC within the ATL, was shown to represent both 

high-level visual properties and conceptual properties of objects (Martin et al., 2018). Our 

evidence of visual and semantic effects in the ATL may indicate that the conjoint coding of 

visual and conceptual properties in the PRC could be aided through a multiplexed coding 

scheme, that may also be useful for integrating distinct visual information within a forming 

semantic representation. We can speculate that given that we find visual effects in low 

frequencies, peaking at alpha, the slower theta dynamics for semantics could be useful to 

integrate semantic information from the environment over multiple alpha cycles. However, the 

currently study, while finding significant differences in the peak frequencies for visual and 

semantic models, would require addition support for this hypothesis. Further ECOG 

investigations will be important to highlight the specific spatio-temporal-spectral signatures for 

vision and semantics in the ATL, and how complementary aspects of low frequency activity 

relate to specific properties of objects. These studies would also offer the opportunity to test 

how low-frequency phase information and high frequency activity (>100 Hz) might jointly 

represent object information through phase-amplitude coupling (Canolty and Knight, 2010; 

Jensen and Mazaheri, 2010; Jensen et al., 2014). This is supported by recent work showing 

that high frequency activity to different object categories occurs at different phases of a low-

frequency oscillation, showing how phase-amplitude coupling could relate to phase coding 

(Watrous et al., 2015b). 

  

One clear step forward provided by our study, is determining how object information across 

different brain areas was related (also see Goddard et al., 2016 and ; Ince et al., 2015 for 

related approaches). This is an important step, because, although our main analyses highlight 

parallel hierarchies of vision to semantics and posterior to anterior regions, this is likely an 

over simplification of the underlying activity dynamics. By combining the RSA time-courses 

with Granger Causality, we were able to show how information in one region changes the state 

of information in another region, characterising how information flows in the VVP. 

 

As predicted by most models of visual processing, our analysis showed visual object 

information was associated with feedforward connectivity, in that visual representations coded 

in occipital low-frequency phase predicted future visual representations in more anterior 

regions in the VVP. In contrast, the flow of semantic representation effects was feedback and 

cross-hemispheric, similar to previous reports of feedback activity in the VVP supporting 

semantic processing (Campo et al., 2013; Chan et al., 2011; Clarke et al., 2011; Poch et al., 

2015; Schendan and Ganis, 2012). Crucially, this analysis enabled us to test the novel 

question of how visual representations impact future semantic representations. This analysis 

showed two prominent motifs. First, visual effects in the occipital region related to subsequent 

semantic effects in the ATL and pVTC (feedforward), and second visual effects in the ATL 

related to subsequent semantic effects in the pVTC (feedback). This analysis revealed more 

complex dynamics than suggested when only looking at peak effects, whilst also emphasising 

the importance of the ATL through receiving feedforward inputs, and sending top-down signals 

to posterior regions. 
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The ATL plays a central role in many theories of semantics, with differential emphasis of 

lateral, polar and medial aspects of the region, which may depend on stimulus modality or task 

(Clarke and Tyler, 2015; Damasio et al., 2004; Grabowski et al., 2001; Mehta et al., 2016; 

Patterson et al., 2007; Ralph, 2014). Given the spatial specificity of MEG source localisation, 

we did not look to test between these positions, and focus on the general role of the extended 

region. However, recent fMRI work using the same DNN and semantic AN approach shows 

that semantic effects for visual objects are represented in the PRC (Devereux et al., 2018), 

which is consistent with a variety of other neuroimaging and neuropsychology studies showing 

the semantics of visual objects is dependent on the PRC (Clarke and Tyler, 2014; Kivisaari et 

al., 2012; Taylor et al., 2006; Tyler et al., 2013; Wright et al., 2015). Although we do not make 

claims about exact localisation of ATL effects from this study, our results do provide critical 

new evidence of spectral and connectivity profiles that can further refine these accounts. One 

speculative prediction we can make regarding the ATLs role, is that it initially integrates visual 

signals during a feedforward alpha drive whilst activating semantic object properties. The 

properties, represented by theta activity, then communicated through feedback activity to the 

pVTC (Chan et al., 2011; Clarke, 2015), with coherent activity between the posterior and 

anterior regions in the VVP supporting the object-specific semantics (Clarke et al., 2011) 

based on top-down semantic and bottom up visual signals. Theta activity may further structure 

alternating modes of feedforward and feedback activity (Halgren et al., 2015), with increased 

recurrent activity necessary under ambiguous perceptual conditions (Schendan and Ganis, 

2012). Future studies utilising ECOG or depth electrodes could begin to test these predictions. 

 

Whilst research with time-sensitive approaches converge towards a model where the initial 

feedforward activation activates the visual aspects of objects, before recurrent dynamics 

process the specific semantics (Chan et al., 2011; Clarke, 2015; Clarke and Tyler, 2015; 

Halgren et al., 2015; Poch et al., 2015; Schendan and Ganis, 2012), we lack an understanding 

of the neuro-computational principles of how vision activates meaning. Here, we tested 

whether oscillatory activity could represent stimulus-specific visual and semantic object 

properties, and showed that visual properties were most associated with low frequency phase, 

and semantic properties were associated with theta phase information. Further, distinct modes 

of connectivity underpinned the flow of information, where visual information flowed in a 

feedforward direction, semantics in feedback, whilst the transfer between vision and semantics 

relied on feedforward, feedback and intra-regional flow. Our results highlight the ATL as an 

important region, both in representing visual and semantic information through a multiplexed 

code, and for the transformation of information from visual to semantic. By combining 

oscillations, connectivity, RSA and computational models, we show how visual signals activate 

meaning taking us towards a more detailed model of object recognition. 
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Table 1. TF RSA results 

Models ROI Freqs Times Mass cluster p 

Visual-layer 1 Occip 4-50 Hz 0-730 ms 4857 0.0002 

Visual-layer 1 LpVTC 4-15 Hz 0-610 ms 1392 0.0073 

Visual-layer 1 RpVTC 4-15 Hz 0-350 ms 1364 0.0077 

Visual-layer 1 LATL 4-14 Hz 0-410 ms 1379 0.0077 

Visual-layer 1 RATL 7-15 Hz 10-370 ms 369 0.0365 

Visual-layer 1 RATL 4-6 Hz 70-350 ms 233 0.1001 

Visual-layer 2 Occip 4-34 Hz 0-750 ms 5343 0.0002 

Visual-layer 2 LpVTC 4-16 Hz 0-630 ms 1522 0.0051 

Visual-layer 2 RpVTC 4-21 Hz 0-770 ms 2093 0.0035 

Visual-layer 2 LATL 4-14 Hz 0-390 ms 1378 0.0077 

Visual-layer 2 RATL 4-15 Hz 0-750 ms 1298 0.0079 

Visual-layer 3 Occip 4-32 Hz 0-910 ms 5599 0.0001 

Visual-layer 3 LpVTC 4-23 Hz 0-690 ms 2301 0.0030 

Visual-layer 3 RpVTC 4-23 Hz 0-730 ms 3033 0.0018 

Visual-layer 3 LATL 4-18 Hz 0-590 ms 1955 0.0036 

Visual-layer 3 RATL 4-17 Hz 0-690 ms 1943 0.0036 

Early-semantic Occip 5-14 Hz 0-690 ms 701 0.0145 

Early-semantic LpVTC 4-6 Hz 170-450 ms 251 0.0843 

Early-semantic RpVTC 12-21 Hz 110-390 ms 231 0.1014 

Early-semantic LATL 4-8 Hz 0-450 ms 584 0.0181 

Late-semantic LpVTC 4-8 Hz 0-630 ms 585 0.0181 

Late-semantic LATL 4-7 Hz 0-390 ms 447 0.0262 

 

 

 

 


