125 research outputs found

    paraSBOLv:a foundation for standard-compliant genetic design visualization tools

    Get PDF
    Diagrams constructed from standardized glyphs are central to communicating complex design information in many engineering fields. For example, circuit diagrams are commonplace in electronics and allow for a suitable abstraction of the physical system that helps support the design process. With the development of the Synthetic Biology Open Language Visual (SBOLv), bioengineers are now positioned to better describe and share their biological designs visually. However, the development of computational tools to support the creation of these diagrams is currently hampered by an excessive burden in maintenance due to the large and expanding number of glyphs present in the standard. Here, we present a Python package called paraSBOLv that enables access to the full suite of SBOLv glyphs through the use of machine-readable parametric glyph definitions. These greatly simplify the rendering process while allowing extensive customization of the resulting diagrams. We demonstrate how the adoption of paraSBOLv can accelerate the development of highly specialized biodesign visualization tools or even form the basis for more complex software by removing the burden of maintaining glyph-specific rendering code. Looking forward, we suggest that incorporation of machine-readable parametric glyph definitions into the SBOLv standard could further simplify the development of tools to produce standard-compliant diagrams and the integration of visual standards across fields

    Development and evolution of tooth renewal in neoselachian sharks as a model for transformation in chondrichthyan dentitions

    Get PDF
    A defining feature of dentitions in modern sharks and rays is the regulated pattern order that generates multiple replacement teeth. These are arranged in labio‐lingual files of replacement teeth that form in sequential time order both along the jaw and within successively initiated teeth in a deep dental lamina. Two distinct adult dentitions have been described: alternate, in which timing of new teeth alternates between two adjacent files, each erupting separately, and the other arranged as single files, where teeth of each file are timed to erupt together, in some taxa facilitating similarly timed teeth to join to form a cutting blade. Both are dependent on spatiotemporally regulated formation of new teeth. The adult Angel shark Squatina (Squalomorphii) exemplifies a single file dentition, but we obtained new data on the developmental order of teeth in the files of Squatina embryos, showing alternate timing of tooth initiation. This was based on micro‐CT scans revealing that the earliest mineralised teeth at the jaw margin and their replacements in file pairs (odd and even jaw positions) alternate in their initiation timing. Along with Squatina, new observations from other squalomorphs such as Hexanchus and Chlamydoselachus, together with representatives of the sister group Galeomorphii, have established that the alternate tooth pattern (initiation time and replacement order) characterises the embryonic dentition of extant sharks; however, this can change in adults. These character states were plotted onto a recent phylogeny, demonstrating that the Squalomorphii show considerable plasticity of dental development. We propose a developmental‐evolutionary model to allow change from the alternate to a single file alignment of replacement teeth. This establishes new dental morphologies in adult sharks from inherited alternate order

    A 100 kHz time-resolved multiple-probe femtosecond to second infrared absorption spectrometer

    Get PDF
    We present a dual-amplifier laser system for time-resolved multiple-probe infrared (IR) spectroscopy based on the ytterbium potassium gadolinium tungstate (Yb:KGW) laser medium. Comparisons are made between the ytterbium-based technology and titanium sapphire laser systems for time-resolved IR spectroscopy measurements. The 100 kHz probing system provides new capability in time-resolved multiple-probe experiments, as more information is obtained from samples in a single experiment through multiple-probing. This method uses the high repetition-rate probe pulses to repeatedly measure spectra at 10 μs intervals following excitation allowing extended timescales to be measured routinely along with ultrafast data. Results are presented showing the measurement of molecular dynamics over >10 orders of magnitude in timescale, out to 20 ms, with an experimental time response o

    Holocephalan (Chondrichthyes) dental plates with hypermineralized dentine as a substitute for missing teeth through developmental plasticity

    Get PDF
    All extant holocephalans (Chimaeroidei) have lost the ability to make individual teeth, as tooth germs are neither part of the embryonic development of the dental plates, nor of their continuous growth. Instead, a hypermineralized dentine with a unique mineral, whitlockin, is specifically distributed within a dentine framework into structures that give the dental plates their distinctive, species-specific morphology. Control of the regulation of this distribution must be cellular, with a dental epithelium initiating the first outer dentine, and via contact with ectomesenchymal tissue as the only embryonic cell type that can make dentine. Chimaeroids have three pairs of dental plates within their mouth, two in the upper jaw and one in the lower. In the genera Chimaera, Hydrolagus and Harriotta, the morphology and distribution of this whitlockin within each dental plate differs both between different plates in the same species and between species. Whitlockin structures include ovoids, rods and tritoral pads, with substantial developmental changes between these. For example, rods appear before the ovoids, and result from a change in the surrounding trabecular dentine. In Harriotta, ovoids form separately from the tritoral pads, but also contribute to tritor development, while in Chimaera and Hydrolagus, tritoral This article is protected by copyright. All rights reserved. pads develop from rods that later are perforated to accommodate the vasculature. Nevertheless, the position of these structures, secreted by the specialized odontoblasts (whitloblasts), appears highly regulated in all three species. These distinct morphologies are established at the aboral margin of the dental plate, with proposed involvement of the outer dentine. We observe that this outer layer forms into serially added lingual ridges, occurring on the anterior plate only. We propose that positional, structural specificity must be contained within the ectomesenchymal populations, as stem cells below the dental epithelium, and a coincidental occurrence of each lingual, serial ridge with the whitlockin structures that contribute to the wear resistant oral surface

    Prostate cancer detection through unbiased capture of methylated cell-free DNA

    Get PDF
    Funding: Cancer Research UK, CRUK Career Development Fellowship, University of Cambridge W.D. Armstrong Trust Fund, John Black Prostate Cancer Foundation Young Investigator Award. This research was also supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014).Prostate cancer screening using prostate-specific antigen (PSA) has been shown to reduce mortality but with substantial overdiagnosis, leading to unnecessary biopsies. The identification of a highly specific biomarker using liquid biopsies, represents an unmet need in the diagnostic pathway for prostate cancer. In this study, we employed a method that enriches for methylated cell-free DNA fragments coupled with a machine learning algorithm which enabled the detection of metastatic and localized cancers with AUCs of 0.96 and 0.74, respectively. The model also detected 51.8% (14/27) of localized and 88.7% (79/89) of patients with metastatic cancer in an external dataset. Furthermore, we show that the differentially methylated regions reflect epigenetic and transcriptomic changes at the tissue level. Notably, these regions are significantly enriched for biologically relevant pathways associated with the regulation of cellular proliferation and TGF-beta signaling. This demonstrates the potential of circulating tumor DNA methylation for prostate cancer detection and prognostication.Peer reviewe

    Defining predictors of responsiveness to advanced therapies in Crohn’s disease and ulcerative colitis: protocol for the IBD-RESPONSE and nested CD-metaRESPONSE prospective, multicentre, observational cohort study in precision medicine

    Get PDF
    Introduction: Characterised by chronic inflammation of the gastrointestinal tract, inflammatory bowel disease (IBD) symptoms including diarrhoea, abdominal pain and fatigue can significantly impact patient’s quality of life. Therapeutic developments in the last 20 years have revolutionised treatment. However, clinical trials and real-world data show primary non-response rates up to 40%. A significant challenge is an inability to predict which treatment will benefit individual patients. Current understanding of IBD pathogenesis implicates complex interactions between host genetics and the gut microbiome. Most cohorts studying the gut microbiota to date have been underpowered, examined single treatments and produced heterogeneous results. Lack of cross-treatment comparisons and well-powered independent replication cohorts hampers the ability to infer real-world utility of predictive signatures. IBD-RESPONSE will use multi-omic data to create a predictive tool for treatment response. Future patient benefit may include development of biomarker-based treatment stratification or manipulation of intestinal microbial targets. IBD-RESPONSE and downstream studies have the potential to improve quality of life, reduce patient risk and reduce expenditure on ineffective treatments. Methods and analysis: This prospective, multicentre, observational study will identify and validate a predictive model for response to advanced IBD therapies, incorporating gut microbiome, metabolome, single-cell transcriptome, human genome, dietary and clinical data. 1325 participants commencing advanced therapies will be recruited from ~40 UK sites. Data will be collected at baseline, week 14 and week 54. The primary outcome is week 14 clinical response. Secondary outcomes include clinical remission, loss of response in week 14 responders, corticosteroid-free response/remission, time to treatment escalation and change in patient-reported outcome measures. Ethics and dissemination: Ethical approval was obtained from the Wales Research Ethics Committee 5 (ref: 21/WA/0228). Recruitment is ongoing. Following study completion, results will be submitted for publication in peer-reviewed journals and presented at scientific meetings. Publications will be summarised at www.ibd-response.co.uk. Trial registration number: ISRCTN96296121

    The logic of the floral transition: reverse-engineering the switch controlling the identity of lateral organs

    Get PDF
    Much laboratory work has been carried out to determine the gene regulatory network (GRN) that results in plant cells becoming flowers instead of leaves. However, this also involves the spatial distribution of different cell types, and poses the question of whether alternative networks could produce the same set of observed results. This issue has been addressed here through a survey of the published intercellular distribution of expressed regulatory genes and techniques both developed and applied to Boolean network models. This has uncovered a large number of models which are compatible with the currently available data. An exhaustive exploration had some success but proved to be unfeasible due to the massive number of alternative models, so genetic programming algorithms have also been employed. This approach allows exploration on the basis of both data-fitting criteria and parsimony of the regulatory processes, ruling out biologically unrealistic mechanisms. One of the conclusions is that, despite the multiplicity of acceptable models, an overall structure dominates, with differences mostly in alternative fine-grained regulatory interactions. The overall structure confirms the known interactions, including some that were not present in the training set, showing that current data are sufficient to determine the overall structure of the GRN. The model stresses the importance of relative spatial location, through explicit references to this aspect. This approach also provides a quantitative indication of how likely some regulatory interactions might be, and can be applied to the study of other developmental transitions
    corecore