5,543 research outputs found

    Subdomain-based test data generation

    Get PDF
    Abstract Considerable effort is required to test software thoroughly. Even with automated test data generation tools, it is still necessary to evaluate the output of each test case and identify unexpected results. Manual effort can be reduced by restricting the range of inputs testers need to consider to regions that are more likely to reveal faults, thus reducing the number of test cases overall, and therefore reducing the effort needed to create oracles. This article describes and evaluates search-based techniques, using evolution strategies and subset selection, for identifying regions of the input domain (known as subdomains) such that test cases sampled at random from within these regions can be used efficiently to find faults. The fault finding capability of each subdomain is evaluated using mutation analysis, a technique that is based on faults programmers are likely to make. The resulting subdomains kill more mutants than random testing (up to six times as many in one case) with the same number or fewer test cases. Optimised subdomains can be used as a starting point for program analysis and regression testing. They can easily be comprehended by a human test engineer, so may be used to provide information about the software under test and design further highly efficient test suites

    The potential for dietary factors to prevent or treat osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease for which there are no disease-modifying drugs. It is a leading cause of disability in the UK. Increasing age and obesity are both major risk factors for OA and the health and economic burden of this disease will increase in the future. Focusing on compounds from the habitual diet that may prevent the onset or slow the progression of OA is a strategy that has been under-investigated to date. An approach that relies on dietary modification is clearly attractive in terms of risk/benefit and more likely to be implementable at the population level. However, before undertaking a full clinical trial to examine potential efficacy, detailed molecular studies are required in order to optimise the design. This review focuses on potential dietary factors that may reduce the risk or progression of OA, including micronutrients, fatty acids, flavonoids and other phytochemicals. It therefore ignores data coming from classical inflammatory arthritides and nutraceuticals such as glucosamine and chondroitin. In conclusion, diet offers a route by which the health of the joint can be protected and OA incidence or progression decreased. In a chronic disease, with risk factors increasing in the population and with no pharmaceutical cure, an understanding of this will be crucial

    Direct Democracy, State Governments, and the Re-energized GMO Debate : Implications of California's Proposition 37

    Get PDF
    It is often convenient to divide the world into those countries that have been generally accepting of agricultural biotechnology and those that are not. While the debate over biotechnology continues to rage where biotechnology has not been accepted, in adopting countries the debate is often seen as being over. This has been the case for the United States. In fact, the debate over agricultural biotechnology has continued but has not had a high profile. The debate in the United States has been re-energized due to California's 2012 Proposition 37, which would have required labeling of GM-foods in the state. Given the importance of California in both the national food system and national politics, Proposition 37 had national and international ramifications. While Proposition 37 was rejected by a narrow margin, it has spurred other state- and municipal-level initiatives regarding the regulation of biotechnology. This article examines the political dynamics underlying Proposition 37 and the economic implications of similar regulatory initiatives becoming law in the future. The article argues that proposed measures can have a major influence on attempts to regulate in other jurisdictions

    Access for Laparoendoscopic Single Site Surgery

    Get PDF
    Laparoscopic surgery is the standard of care for many abdominal and pelvic operations and is widely applied today. LESS (Laparo-Endoscopic Single Site) surgery, originally attempted in the 1990s, is an advanced minimally invasive approach that allows laparoscopic operations to be undertaken through a small (<15 mm) incision in the umbilicus, a preexisting scar. The presence of a preexisting scar allows LESS surgery to be essentially scarless, which is the key benefit to LESS operations. Herein, we review our experience with over 500 LESS operations and discuss the key techniques to establishing access to the peritoneal cavity. We review the options for obtaining access, available instrumentation, common challenges and solutions for access. We conclude that LESS surgery is safe and provides outcomes with superior cosmesis relative to conventional laparoscopy. LESS surgery should be embraced, as patient demand is rapidly increasing

    Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clark, S., Hubbard, K., Ralston, D., McGillicuddy, D., Stock, C., Alexander, M., & Curchitser, E. Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine. Journal of Marine Systems, 230, (2022): 103737, https://doi.org/10.1016/j.jmarsys.2022.103737.Worldwide, warming ocean temperatures have contributed to extreme harmful algal bloom events and shifts in phytoplankton species composition. In 2016 in the Gulf of Maine (GOM), an unprecedented Pseudo-nitzschia bloom led to the first domoic-acid induced shellfishery closures in the region. Potential links between climate change, warming temperatures, and the GOM Pseudo-nitzschia assemblage, however, remain unexplored. In this study, a global climate change projection previously downscaled to 7-km resolution for the Northwest Atlantic was further refined with a 1–3-km resolution simulation of the GOM to investigate the effects of climate change on HAB dynamics. A 25-year time slice of projected conditions at the end of the 21st century (2073–2097) was compared to a 25-year hindcast of contemporary ocean conditions (1994–2018) and analyzed for changes to GOM inflows, transport, and Pseudo-nitzschia australis growth potential. On average, climate change is predicted to lead to increased temperatures, decreased salinity, and increased stratification in the GOM, with the largest changes occurring in the late summer. Inflows from the Scotian Shelf are projected to increase, and alongshore transport in the Eastern Maine Coastal Current is projected to intensify. Increasing ocean temperatures will likely make P. australis growth conditions less favorable in the southern and western GOM but improve P. australis growth conditions in the eastern GOM, including a later growing season in the fall, and a longer growing season in the spring. Combined, these changes suggest that P. australis blooms in the eastern GOM could intensify in the 21st century, and that the overall Pseudo-nitzschia species assemblage might shift to warmer-adapted species such as P. plurisecta or other Pseudo-nitzschia species that may be introduced.This research was funded by the National Science Foundation (Grant Number OCE-1840381), the National Institute of Environmental Health Sciences (Grant Number 1P01ES028938), the Woods Hole Center for Oceans and Human Health, and the Academic Programs Office of the Woods Hole Oceanographic Institution

    Are Drivers of Root-Associated Fungal Community Structure Context Specific?

    Get PDF
    The composition and structure of plant-root-associated fungal communities are determined by local abiotic and biotic conditions. However, the relative influence and identity of relationships to abiotic and biotic factors may differ across environmental and ecological contexts, and fungal functional groups. Thus, understanding which aspects of root-associated fungal community ecology generalise across contexts is the first step towards a more predictive framework. We investigated how the relative importance of biotic and abiotic factors scale across environmental and ecological contexts using high-throughput sequencing (ca. 55 M Illumina metabarcoding sequences) of >260 plant-root-associated fungal communities from six UK salt marshes across two geographic regions (South-East and North-West England) in winter and summer. Levels of root-associated fungal diversity were comparable with forests and temperate grasslands, quadrupling previous estimates of salt-marsh fungal diversity. Whilst abiotic variables were generally most important, a range of site- and spatial scale-specific abiotic and biotic drivers of diversity and community composition were observed. Consequently, predictive models of diversity trained on one site, extrapolated poorly to others. Fungal taxa from the same functional groups responded similarly to the specific drivers of diversity and composition. Thus site, spatial scale and functional group are key factors that, if accounted for, may lead to a more predictive understanding of fungal community ecology

    Functional Profiling of Transcription Factor Genes in Neurospora crassa.

    Get PDF
    Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6) binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed), followed by asexual sporulation (38%), and the various stages of sexual development (19%). Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated
    corecore