6,821 research outputs found

    Designing fuzzy rule based classifier using self-organizing feature map for analysis of multispectral satellite images

    Full text link
    We propose a novel scheme for designing fuzzy rule based classifier. An SOFM based method is used for generating a set of prototypes which is used to generate a set of fuzzy rules. Each rule represents a region in the feature space that we call the context of the rule. The rules are tuned with respect to their context. We justified that the reasoning scheme may be different in different context leading to context sensitive inferencing. To realize context sensitive inferencing we used a softmin operator with a tunable parameter. The proposed scheme is tested on several multispectral satellite image data sets and the performance is found to be much better than the results reported in the literature.Comment: 23 pages, 7 figure

    Photon indistinguishability measurements under pulsed and continuous excitation

    Get PDF
    The indistinguishability of successively generated photons from a single quantum emitter is most commonly measured using two-photon interference at a beam splitter. Whilst for sources excited in the pulsed regime the measured bunching of photons reflects the full wavepacket indistinguishability of the emitted photons, for continuous wave (cw) excitation the inevitable dependence on detector timing resolution and driving strength obscures the underlying photon interference process. Here we derive a method to extract the photon indistinguishability from cw measurements by considering the relevant correlation functions. The equivalence of both methods is experimentally verified through comparison of cw and pulsed excitation of an archetypal source of photons, a single molecule

    Hybridised sustainability metrics for use in life cycle assessment of bio-based products: resource efficiency and circularity

    Get PDF
    The development, implementation and social acceptance of resource efficient, circular, bio-based economies require critical understanding of the whole supply chain from feedstock to end-use. Trust, transparency and traceability will be paramount. Though life cycle assessment (LCA) is a universally chosen approach to fulfil this purpose, the nature of data required and the depth of analysis lead to complex interpretations of the findings. Herein, a new set of hybridised, first-line sustainability indicators, drawn from the principles of green chemistry and resource (material and energy) circularity, are reported. These flexible, potentially stand-alone metrics are demonstrated via application to an exemplary comparative LCA, incorporating the hybridised indicators including hazardous chemical use, waste generated, resource circularity and energy efficiency, from the “gate-to-gate” stages for the bio-based case studies and their petro-derived commercial counterparts. These metrics were observed to quantify critical new information relevant to our transition to a circular economy, bridging significant gaps in contemporary environmental impact assessment methodologies. Appropriate additional evaluations that examine the performance of metrics, when the embedded resource efficiency and circularity strategies are omitted, have also been undertaken and reported. The data drawn from employing these methods are crucial to inform and encourage operational optimisation, transparency in sustainability reporting and practices to a significant number of value-chain actors including manufacturers, policy makers and consumers

    Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    Get PDF
    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates

    Ultracompact quantum splitter of degenerate photon pairs

    Full text link
    Integrated sources of indistinguishable photons have attracted a lot of attention because of their applications in quantum communication and optical quantum computing. Here, we demonstrate an ultra-compact quantum splitter for degenerate single photons based on a monolithic chip incorporating Sagnac loop and a micro-ring resonator with a footprint of 0.011 mm2, generating and deterministically splitting indistinguishable photon pairs using time-reversed Hong-Ou-Mandel interference. The ring resonator provides enhanced photon generation rate, and the Sagnac loop ensures the photons travel through equal path lengths and interfere with the correct phase to enable the reversed HOM effect to take place. In the experiment, we observed a HOM dip visibility of 94.5 +- 3.3 %, indicating the photons generated by the degenerate single photon source are in a suitable state for further integration with other components for quantum applications, such as controlled-NOT gates

    Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insects provide tractable models for enhancing our understanding of the physiological and cellular processes that enable survival at extreme low temperatures. They possess three main strategies to survive the cold: freeze tolerance, freeze avoidance or cryoprotective dehydration, of which the latter method is exploited by our model species, the Arctic springtail <it>Megaphorura arctica</it>, formerly <it>Onychiurus arcticus </it>(Tullberg 1876). The physiological mechanisms underlying cryoprotective dehydration have been well characterised in <it>M. arctica </it>and to date this process has been described in only a few other species: the Antarctic nematode <it>Panagrolaimus davidi</it>, an enchytraied worm, the larvae of the Antarctic midge <it>Belgica antarctica </it>and the cocoons of the earthworm <it>Dendrobaena octaedra</it>. There are no in-depth molecular studies on the underlying cold survival mechanisms in any species.</p> <p>Results</p> <p>A cDNA microarray was generated using 6,912 <it>M. arctica </it>clones printed in duplicate. Analysis of clones up-regulated during dehydration procedures (using both cold- and salt-induced dehydration) has identified a number of significant cellular processes, namely the production and mobilisation of trehalose, protection of cellular systems via small heat shock proteins and tissue/cellular remodelling during the dehydration process. Energy production, initiation of protein translation and cell division, plus potential tissue repair processes dominate genes identified during recovery. Heat map analysis identified a duplication of the trehalose-6-phosphate synthase (TPS) gene in <it>M. arctica </it>and also 53 clones co-regulated with TPS, including a number of membrane associated and cell signalling proteins. Q-PCR on selected candidate genes has also contributed to our understanding with glutathione-S-transferase identified as the major antioxdidant enzyme protecting the cells during these stressful procedures, and a number of protein kinase signalling molecules involved in recovery.</p> <p>Conclusion</p> <p>Microarray analysis has proved to be a powerful technique for understanding the processes and genes involved in cryoprotective dehydration, beyond the few candidate genes identified in the current literature. Dehydration is associated with the mobilisation of trehalose, cell protection and tissue remodelling. Energy production, leading to protein production, and cell division characterise the recovery process. Novel membrane proteins, along with aquaporins and desaturases, have been identified as promising candidates for future functional analyses to better understand membrane remodelling during cellular dehydration.</p

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    The surprising persistence of time-dependent quantum entanglement

    Get PDF
    The mismatch between elegant theoretical models and the detailed experimental reality is particularly pronounced in quantum nonlinear interferometry (QNI). In stark contrast to theory, experiments contain pump beams that start in impure states and that are depleted, quantum noise that affects—and drives—any otherwise gradual build up of the signal and idler fields, and nonlinear materials that are far from ideal and have a complicated time-dependent dispersive response. Notably, we would normally expect group velocity mismatches to destroy any possibility of measurable or visible entanglement, even though it remains intact—the mismatches change the relative timings of induced signal–idler entanglements, thus generating 'which path' information. Using an approach based on the positive-P representation, which is ideally suited to such problems, we are able to keep detailed track of the time-domain entanglement crucial for QNI. This allows us to show that entanglement can be—and is—recoverable despite the obscuring effects of real-world complications; and that recovery is attributable to an implicit time-averaging present in the detection process

    mTOR inhibition in breast cancer

    Get PDF
    No description supplie

    Investigation of USP30 inhibition to enhance Parkin-mediated mitophagy: tools and approaches

    Get PDF
    Mitochondrial dysfunction is implicated in Parkinson disease (PD). Mutations in Parkin, an E3 ubiquitin ligase, can cause juvenile-onset Parkinsonism probably through impairment of mitophagy. Inhibition of the de-ubiquitinating enzyme USP30 may counter this effect to enhance mitophagy. Using different tools and cellular approaches, we wanted to independently confirm this claimed role for USP30. Pharmacological characterization of additional tool compounds that selectively inhibit USP30 are reported. The consequence of USP30 inhibition by these compounds, siRNA knockdown and overexpression of dominant-negative USP30 in the mitophagy pathway in different disease-relevant cellular models was explored. Knockdown and inhibition of USP30 showed increased p-Ser65-ubiquitin levels and mitophagy in neuronal cell models. Furthermore, patient-derived fibroblasts carrying pathogenic mutations in Parkin showed reduced p-Ser65-ubiquitin levels compared to wild-type cells, levels that could be restored using either USP30 inhibitor or dominant-negative USP30 expression. Our data provide additional support for USP30 inhibition as a regulator of the mitophagy pathway
    • …
    corecore