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Abstract
The mismatch between elegant theoretical models and the detailed experimental reality is
particularly pronounced in quantum nonlinear interferometry (QNI). In stark contrast to theory,
experiments contain pump beams that start in impure states and that are depleted, quantum noise
that affects—and drives—any otherwise gradual build up of the signal and idler fields, and
nonlinear materials that are far from ideal and have a complicated time-dependent dispersive
response. Notably, we would normally expect group velocity mismatches to destroy any possibility
of measurable or visible entanglement, even though it remains intact—the mismatches change the
relative timings of induced signal–idler entanglements, thus generating ‘which path’ information.
Using an approach based on the positive-P representation, which is ideally suited to such
problems, we are able to keep detailed track of the time-domain entanglement crucial for QNI.
This allows us to show that entanglement can be—and is—recoverable despite the obscuring
effects of real-world complications; and that recovery is attributable to an implicit time-averaging
present in the detection process.

1. Introduction

Quantum entanglement [1] is important because it plays a key role in a range of quantum devices, notably
in induced coherence [2–4] based quantum imaging/QNI schemes [5–12]; and in the time domain is a
subject of wide-ranging and active study [13–17]. However, the complicating effects of material dispersion
in the entanglement-generating nonlinear medium, or during subsequent propagation, are typically not
considered [18–20]. This has wider relevance, not only for quantum interference in general, but also e.g. in
quantum data transmission [21–23] and quantum nonlinear interferometry (QNI). We demonstrate how
and why, despite the complete de-synchronization of entangled fields caused by material dispersion, a slow
detection process can perform an unexpected ‘entanglement recovery’, so that time resolved QNI can, after
all, succeed.

Our testbed for examining the limitations on time-resolved quantum measurements is a pulsed QNI
system where time dependence is relevant for all field interactions, in particular with the material dispersion
(i.e. group velocity, and group velocity dispersion (GVD)) present alongside the entanglement-generating
nonlinearity. In ghost imaging, for example, one can imagine a clear separation between standard (spatial)
schemes [24, 25] and temporal schemes [26, 27], but if material dispersion was present during propagation,
such simplicity would be disrupted. To address such intrinsic complications requires a shift in both
theoretical methods and mindset; a description can no longer rely on using only a small number of possible
states (typically Fock states), and judgements based on path indistinguishability or phase shifts. Instead, a
set of time dependent states is required, and consequently it is not path lengths but relative timings that
matter.

How fields propagate and are transported through a QNI system is shown on figure 1; the layout is very
similar to that of Kolobov et al [28]. The key feature of the nonlinearity is that it produces correlated signal
and idler photon pairs from an incoming pump field; this is often achieved using a χ(2) interaction, but here
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Figure 1. A representation of the QNI scheme (e.g. [28]). The two identical pump fields are in blue, signal fields in green, and
idler in red; here the FWM process combines two pump photons to create a signal–idler pair. The resulting signal fields then
interfere at the BS and detected at DA and DB. In an Imperial experiment [29], the nonlinear stages (NL1 and NL2) take place in
opposite directions through the same length of fibre.

we use a degenerate-pump four wave mixing (FWM) (see e.g. [29]). A pump field enters the first nonlinear
stage (NL1) and generates entangled signal and idler fields; and while the signal is diverted to the final
beamsplitter (BS), the idler instead interacts with the to-be-imaged object, and then serves as a co-input,
with a copy of the original pump field, to the second nonlinear stage (NL2). The signal field departing NL2
is thus influenced by an idler field entangled with the first signal field, and this information is extracted by
interference at the output BS, before photon detection. Although here we test for entanglement using a
QNI, an alternative would be to use a two-mode entanglement criterion [30].

The nonlinear propagation model in our simulations is a well-established one derived originally for the
prediction of squeezing generation in optical fibres [31–35], has also been used to model multi-field
parametric processes [36], and here centres primarily on multi-field nonlinear propagation through a
dispersive material. It also includes stages representing setting up the initial conditions, interaction with an
object to be imaged, and mixing at a BS at the interferometer output. In this work we use an established
off-diagonal coherent state basis positive-P approach [37–39], that enables both group velocity and
dispersion to be easily implemented in a numerical scheme [31]; crucially, its off-diagonal nature allows a
complete representation of the full quantum mechanical density matrix of the system, and of its dynamics.

2. Propagation, nonlinearity and dispersion

In comparison to other models used to describe nonlinear interferometry, ours includes more features.
Existing approaches tend to be simple and rather abstract, relying on Fock states, CW or monochromatic
fields, and idealized materials (e.g. purely nonlinear materials). In contrast, real systems have bandwidth,
are time dependent, use pulses, and rely on imperfect materials with dispersive properties and substructure
(e.g. periodic poling). Thus existing simple models are not sufficient to describe the physics present in
nonlinear interferometers, and this necessarily affects the depth of our understanding. Here we include
nonlinearity, dispersion, and propagation on an equal footing, providing a good coverage of the
unavoidable and significant physical processes present in QNI applications.

Our description treats each optical pump pulse as a set of time-dependent quasi-conjugate pump field
amplitudes αu(t), α†

u(t), which are only complex-conjugate on average; and we do likewise for the signal
αs(t), α†

s (t), and idler αi(t), α†
i (t) pulses. There is also a set of independent time-dependent noise

increments {dWa(t)}. In simulation, time is discretized and labels a set of finely divided, sub-pulse length
modes [40, 41] where each field is held as an array of sequential ‘time-bins’ (or ‘temporal modes’) at
t ∈ {tj}, each of which contains pairs of complex field amplitudes; these interact and evolve as the fields
propagate step-by-step through space. Since these time-bins have a simulation-specific duration, field
averages such as 〈α†

sαs〉 represent intensity (in photons per second), not photon number, and normalizations
and parameter scalings reflect this.

This field information is held along with fixed parameters for the nonlinear coupling κ, losses γm, and
dispersive properties Dm(ω), where the field subscripts, as above, are m ∈ {u, s, i}. Since this is a stochastic
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technique, very many independent copies of the evolution need to be run (for the simulations here,
typically in the range 105 to 107), and the necessary ensemble averages taken.

This propagation model is very close to previous ones (e.g. [31, 34, 36]), but here we have three
co-propagating fields and a different nonlinear interaction; namely one for the degenerate FWM process
with only resonant wave mixing terms where 2ωu = ωs + ωi. Since self-phase modulation (SPM) terms are
not significant in the low-power regime (see e.g. [29]), the interaction Hamiltonian we need here is simply

Ĥf w m = ı�χâ†2
u âsâi − ı�χ∗â2

uâ†s â†i . (1)

This interaction term results in propagation equations which are best expressed in the incremental form
suited to such stochastic differential equations (SDEs) [37]. In an appropriate co-moving frame, including
loss along with nonlinear effects [34], but suppressing the time argument common to all fields αm,α†

m and
quantum noise increments dWa, we have (see appendix A)

dαs =
[
−γsαs + χ∗αuαuα

†
i

]
dz +

{
(2χ)1/2αu

}
dW1, (2)

dα†
s =

[
−γsα

†
s + χα†

uα
†
uαi

]
dz +

{
(2χ∗)1/2α†

u

}
dW2, (3)

dαi =
[
−γiαi + χ∗αuαuα

†
s

]
dz +

{
(2χ)1/2αu

}
dW1, (4)

dα†
i =

[
−γiα

†
i + χα†

uα
†
uαs

]
dz +

{
(2χ∗)1/2α†

u

}
dW2, (5)

dαu =
[
−γuαu − 2χα†

uαsαi

]
dz + ı{2χαsαi}1/2dW3, (6)

dα†
u =

[
−γuα

†
u − 2χ∗αuα

†
sα

†
i

]
dz + ı

{
2χ∗α†

sα
†
i

}1/2
dW4. (7)

These equations are used to update each time-bin in the temporal profile of the fields as that profile
propagates (steps) forward in space, i.e. propagates along the optical fibre. Deterministic evolution terms
are in square brackets [· · ·], and prefactors for the stochastic (noisy) terms are in braces {· · ·}. The noises
are uncorrelated, with δab = 〈dWa(t)dWb(t)〉. Note that a classical model of the same process (or even a
semi-classical model, see e.g. [42–44]) would have only three equations and no noise terms.

Here we see that there are both coherent interactions between the three fields, and correlated nonlinear
quantum noise terms. The noise increment dW1 drives both αs and αi, while dW2 drives α†

s and α†
i ,

ensuring the pairs are correlated but not complex conjugate. This freedom allows us to represent
entanglement [1] as classical statistical correlations between complex field amplitudes which are capable of
reproducing the off-diagonal elements of the density matrix—i.e. they can represent all the necessary
quantum properties [37]. This is possible because each field is represented by two independent amplitudes
αm and α†

m; and although they are complex conjugate on average, i.e. 〈αm〉 = 〈α†
m〉∗, in any given trajectory

making up part of the large ensemble, they need not be. By looking at the SDE’s for the nonlinearity
(2)–(7), we can see that the non-daggered and the daggered amplitudes are driven by different noises. Thus
both the mean photon numbers 〈α†

sαs〉 and 〈α†
i αi〉 could even remain nearly zero even while a significant

quantum statistical correlation (i.e. entanglement) is being created between the signal and idler fields; i.e.
between αs and αi, and between α†

s and α†
i .

Material dispersion is the other key feature, and we interleave it with the nonlinearity in a split-step
scheme (see e.g. Carter et al [31, 34]), using linear phase shifts in the spectral domain for group velocity vg,
and quadratic shifts for GVD. This process, with the exception of the need to apply it to quasi-conjugate
field profiles α†

m(t) as well as the αm(t) profiles, is essentially identical to that used to apply dispersion in
classical pulse propagation scenarios.

3. Material parameters and objects

The material and input parameters in the simulations are chosen to ensure the time-dependent nature of
the entanglement will be most exposed to the disruptive effects of material dispersion, which allows us to
demonstrate our findings most clearly. Nevertheless, to remain relevant to at least one experimental regime,
we choose our parameters to be compatible with fiber-based photon pair sources based on spontaneous
FWM [29], which use about 100 cm of Thorlabs PM780-HP fibre (see table 1). For the simulation, we
convert parameters into units based on metres (m), picoseconds (ps), and field excitation amplitudes are
referenced back to photon numbers per picosecond. However, note that any particular parameter’s
numerical value is less important than the relationships between it and other parameter values. A crucial
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Table 1. Material parameters used in the simulations, based on the experimental setup of [29].
Since the fibre is weakly guiding, these are based on those for bulk silica. The nonlinearity in SI
units is n2 = 3 × 10−20 m2 W−1, the loss is γ = 0.004 m, and Δvg is the difference in group
velocity between the fields as compared to the pump value. In simulation units, the PM780-HP’s
stated transverse field mode area of about 25 μm2 and the pump photon energy of 25 × 10−20 J,
means that the rescaled nonlinearity is n′′

2 = 0.3 × 10−15 per photon-picosecond. In a time-bin T
ps long, the pump photon has a power ∼ (0.25/T) μW, so that a power of 100 W corresponds to
a flux of 4 × 108 photons ps−1. Estimates for signal and idler fields are similar. Note that the
pump powers used in the simulations are increased to enable good simulation statistics (see
appendix B).

Field Wavelength (nm) Frequency (THz) Δvg (ps m−1) Dispersion d2 (ps2 km−1)

Pump 768 390.5 0 0.589
Signal 700 428.0 −100 0.489
Idler 850 353.0 +83 0.721

step for our demonstration here is to consider pulsed operation on a picosecond scale, where the group
velocity mismatches become significant during propagation through the optical fibre.

Since the effect of group velocity mismatches and GVD turns localised entanglements into temporally
distributed ones in our simulations we see a fan of signal amplitudes that spreads out behind the pump
pulse, while a fan of idler amplitudes spreads out before. Thus, crucially, the signal–idler entanglement is
not only distributed over a range of times, it is also between different times; i.e. it is a multi-time
correlation. For best imaging visibility, this requires careful synchronisation at NL2, where the
first-generated part of the idler in NL2 should be coincident with the pump pulse as it enters.

Objects placed in the idler beam leaving the NL1 stage disrupt its entanglement with the first signal
beam, and that disruption changes the second signal beam it helps create. As a result, the interference of the
two signal beams at the BS enable the object’s presence or properties to be inferred by comparing enable the
numbers of detected photons at the interferometer output ports. However, in non-imaging contexts, we
could view such objects as representatives of further disruptive unwanted real-world effects: loss, phase
shifts through optical elements, or extraneous couplings.

In this work we primarily consider passive objects that impart either (i) a phase modulation Δφ of the
idler field, or have (ii) a reflectivity r that reduces the idler amplitudes as they pass (as in [28]); so r = 1
removes all entanglement.

We also consider (iii) imaging of dynamic objects, a key feature of interest since an object’s time
dependence will affect visibility, just as timing, group velocity, and GVD do. Our linearly coupled dynamic
objects with amplitudes β(t),β†(t) respond to the incident pulse profile αm(t),α†

m(t) at the position z
specific to the object; and a field–object interaction strength η. At the object we set the initial conditions at
to so that β(to) = βo and β†(to) = β∗

o , and then time integrate β(t),β†(t) using

dβ(t) =
[
−γoβ(t) + η∗αm(t)

]
dt, (8)

dβ†(t) =
[
−γoβ

†(t) + η α†
m(t)

]
dt. (9)

Now that the incident field αm,α†
m has excited the dynamic object, this excitation acts back on the field and

modifies it. We therefore then update α(t),α†(t) according to the same linear interaction but here
integrated forward in space, using

dαm(t) = −1

2
η β(t)dz; dα†

m(t) = −1

2
η∗β†(t)dz, (10)

and keeping the SDE notation for consistency. Note that this could be extended to allow for nonlinear
couplings or dynamics with the object, or to even use (e.g.) a two-level-atom or Raman models (see e.g. a
classical counterpart [46]).

4. Simulation & statistics

Our simulations, in common with all of their type [31–34], calculate and report ensemble averages of field
amplitudes, intensities, or correlations. To achieve this we run an ensemble made up of many thousands
(or millions) of copies of the system, each with the same initial conditions and parameters, but each based
on a different and independent sequence of random quantum noise increments. Fortunately, due to the
nature of the representation, linear elements such as BSs, our simple objects, or the detection process, do
not introduce extra noise. As a result, the only noise that is present is that from the nonlinear stages

4



New J. Phys. 24 (2022) 103037 P Kinsler et al

(i.e. as given in (2)–(7)). Nevertheless, because the simulations can only attempt a sample of the possible
evolutions, the results are necessarily affected by the unavoidable uncertainties introduced by a finite
ensemble, and this statistical sampling error can only be reduced by increasing the ensemble size.

Further, it has long been known that getting good simulation statistics with the fully quantum
mechanical positive-P representation can be challenging [34]. This means that it is very common to resort
to the much simpler, but approximate, truncated Wigner representation [39] in simulations. In contrast to
the positive-P, the truncated Wigner representation is essentially a semi-classical hidden variable model that
represents the quantum uncertainty as simple statistical fluctuations in the field amplitudes [42, 43]. This
halves the number of equations required by the simulation (needing only a single complex α rather than the
double α and α†), reducing the state space, and resulting in an effective and sufficiently accurate method
when e.g. studying quadrature squeezing [47], and its generation using optical pulses in nonlinear materials
[31, 32, 34, 35].

However, in this work, here we want to ensure an accurate representation of the quantum effects, and so
we stay with the full positive-P model (cf the case of quantum tunnelling [42, 43] and nonlinearity and the
quantum vacuum [44]). Since the subtler effects of quantum entanglement are addressed here, rather than
the simpler quadrature moments, a truncated Wigner representation would not suffice, since it imposes an
unavoidable linkage between correlations and photon number. This leaves us requiring the use of a full
positive-P description and concomitant extremely large computational demands. This is especially
problematic since we may need to resolve very low average photon numbers inside an extremely noisy
background.

We address this using a hybrid strategy which allows us to use just one very high ensemble number MB

simulation to get a good estimate of the background for some particular case, and then adjusting this using
two more simulations with lower ensemble numbers MR but perfectly matched random noise generation.
We call the MB simulation the ‘background’, and the other two the ‘reference’ and ‘target’ simulations. The
reference simulation has identical parameters to the background simulations, and the target simulation has
the parameters corresponding to the particular result we are interested in. The difference between the
reference and target simulations only depends on the differences between the system parameters, with only
‘second-order’ noise effects—resulting from how the noise influences propagation differently, and not from
different random number sequences.

When trying to evaluate a photon number n for some chosen target parameters, we proceed as follows,
using the usual notation where a statistical average is denoted 〈n〉, but additionally adding a subscript to
denote the ensemble size, with ∞ to denote the ideal infinite-ensemble case. Each trajectory in the
background or reference ensembles returns a value n′

j, and each in the target ensemble returns nj.
Thus for n′ we can have either a low sampling error, or a larger sampling error, as follows

〈n′〉∞ 	 〈n′〉MB
=

1

MB

MB∑
j=1

n′
j (11)

≈ 〈n′〉MR
=

1

MR

MR∑
j=1

n′
j, (12)

with the sampling error reducing for each as MB and MR are increased; thus for large enough M values
we have

〈n′〉MB
≈ 〈n′〉MR

(13)

i.e. 〈n′〉MB
− 〈n′〉MR

≈ 0, (14)

but noting that the noise-sampling error in this approximate equality (14) is dominated by the larger
variation in the smaller reference ensemble.

Similarly, for n we have

〈n〉∞ ≈ 〈n〉MR
=

1

MR

MR∑
j=1

nj. (15)

Since the lhs of (14) should average to zero, we can now write

〈n〉∞ = 〈n〉∞ − 〈n′〉∞ + 〈n′〉∞ (16)

≈ 〈n〉MR
− 〈n′〉MR

− 〈n′〉MB
, (17)
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which, given its dependence on both 〈n〉MR
and 〈n′〉MR

, would at first appear to suffer a larger sampling
error based on the smaller MR, not a small sampling error based on the large MB.

However, the key point is that since we have exactly matched the simulation noise values between the
reference simulations of n′

j and target simulations of nj then their difference is due to differences of the
trajectory dynamics between the two simulations, and is only weakly dependent on the specific noise values.
Since this cancels out the bulk of the sampling error due to the noise in these smaller-ensemble simulations,
we can now write

〈n〉∞ 	 〈n〉MR
− 〈n′〉MR

− 〈n′〉MB
, (18)

where now it is the sampling error from the background ensemble that dominates.
Thus for any parameter set, we only need to do one large ensemble MB background simulation, one

smaller ensemble MR reference simulation otherwise identical to the background one, and then then many
small MR target simulations which do have a parameter variation compared to the background simulation.
Background parameters were of systems with perfectly transparent objects, and our target simulations
varied only the object properties.

To look forward to our main results, we typically did background simulations with MB sizes from ∼106

(for figures 4(a) and (d)) to ∼16 × 106 (for figures 4(c) and (f) and 5), and reference and target simulations
with MR = 128 × 103. In the most extreme case, this gave us a factor of 125 improvement in effective
simulation speed, as well as the crucial decrease in statistical error. Every single results curve shown on
figure 5 – i.e. for each different idler offset, each different object phase or reflectivity, and each different
object coupling strength—could be based on a single high-MB background simulation. This enabled a large
and very necessary reduction in total simulation time, since each extra result only needed a simulation with
the much smaller MR samples. While it may be possible to vary other parameters, or perhaps even several
parameters at once, this will induce a greater divergence between propagation in the reference and target
systems, and so affect the extent of any improvement.

5. Entanglement and visibility

The photon number rate as measured at the detectors is taken to be the ensemble-averaged photon number
of the relevant field at that point. An important quantity is the visibility of the entanglement, and the
amount of entanglement between the interferometer’s two signal fields is indicated by the difference in the
two detector counts at the outputs of the interferometer. The visibility is therefore the difference of the
detector counts (‘signal’) divided by the sum of the detector counts (‘background’); i.e.

VAB =
|nA − nB|
(nA + nB)

. (19)

This visibility definition, while key to measuring the performance of the interferometer, can become
problematic for the pulsed situations we cover later in this work. However, note that this VAB is not strictly
an entanglement witness [30, 45].

For a time-dependent case where the detected fields are pulses, there will be very low average amplitudes
in the pulse wings. This means that random noise contributions in the wings can easily dominate the
calculated visibility, and obscure and distract from its true value. To suppress such sampling artefacts in
pulsed cases, we add to the background nA + nB an offset of 0.05% of its maximum value, i.e. that at the
pulse centre.

The simplest detection model is to assume that each simulation time-bin gives rise to its own
independent detections. However, since the time-bin widths are set by the needs of the simulation, they are
unlikely to correspond to any property of an actual detector. To address this, below we introduce a simple
time-averaging detector model, although a more sophisticated approach could to adapt the time-dependent
object model discussed above.

5.1. CW simulations
We test the basics of the simulations with a simple CW-equivalent parameter set with no group velocity or
GVD effects. This requires just a single extra one time-bin simulation per parameter change, so it is easy to
look at how the visibility varies with object phase-shifts and object reflectivities. Here, correlations between
the first signal’s time-bins and the second signal’s ones will always be synchronised, maximizing the
visibility. For sufficiently low signal–idler generation efficiencies, we should see equal photon number
intensities in the signal’s field-modes, but distinct photon number intensities after the BS, i.e. at the two
detectors; this is clearly shown on figure 2.
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Figure 2. Entanglement visibility versus a specified phase shift (top) and reflectivity (bottom) caused by an imaged object.
(a) and (c) Photon counts at detectors DA, DB (in red and blue), compared to photon numbers in the pre-BS signal fields S1, S2

(dashed, in cyan and magenta). (b) and (d) Visibility based on detector measurements (black) compared against one calculated
from signal fields (cyan). On (c) and (d), the r = 1 end result gives the case of a blocking object, i.e. no entanglement. Statistical
noise can be reduced by increasing the ensemble sizes from 256 k, but are retained as-is to emphasise the necessity of the
ensemble averaging. The results match the theoretical fits shown in the background as thick yellow lines.

6. Detection and time averaging

Time averaging is a crucial part of any detection model used here, since real detectors are very slow
(typically � 100 ps) when compared to the temporal resolution of our simulations (∼ps). Although more
sophisticated models can easily be imagined, here we simply sum the time-binned amplitudes of each field
over some chosen m-bin detector response time, before ensemble averaging to get the detected photons.
This assumes that the detector is responding to the cumulative effects of the impinging electric field
amplitudes, before eventually reporting its photon number count; it is not just summing up a sequence of
rapidly taken photon counts. Thus we have

n̄D = 〈ᾱ†ᾱ〉, with ᾱ(†) = (
1

m
)1/2

m∑
i=1

α(†)(ti). (20)

Crucially, this averaging process in the detector helps expose amplitude correlations in the between
time-bins that have become offset due to dispersion mismatches (see appendix C for a toy model of this).
Note that this summation is essentially the same as the process for combining multiple short time bins into
a longer one; just as we need to do in numerical convergence checks.

With this ability to consider the time-averaging properties of detectors in place, we can now use our
simulations to see both (a) the deleterious effect of dispersion on entanglement visibility, and (b) the ability
of detector averaging to recover it. Although it seems unlikely, given the complicated and gradual effects of
nonlinearity and dispersion, that this will grant perfect entanglement recovery, we now test the interplay of
group velocity offsets and dispersion with this detector time-averaging in place.

6.1. Dispersion vs entanglement visibility
Here we consider a quasi-CW case where the pump, signal, and idler fields are all allowed to be
time-dependent, but the input pump field is not a pulse but instead has a constant amplitude. Roughly
speaking, therefore, each triplet of (pump, signal, idler) time-bins in the simulation therefore generates
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Figure 3. Detectable entanglement is obscured by material dispersion, even though the entanglement itself remains: the
no-object case, as group velocity (vg) and GVD mismatches increase, for 100 cm propagation with standard parameters, and
comparing detection time-averaging intervals. Here the mismatch is applied to the signal field S1, so that a vg mismatch causes a
timing offset δτ s at the BS. Circles (◦) are ‘fast detector’ un-averaged results, other symbols show the number of adjacent 0.5 ps
time-bins averaged. For vg mismatches (a), the regular residual bumps in ◦ are a discretization artefact, and can be further
suppressed by increasing the time resolution. The complicated effect of GVD mismatches (b) leads to smooth variations as
different contributions de-phase or rephase.

their own entanglement; but as the fields propagate through the nonlinear material, dispersion takes its
effect. The vg or GVD mismatches between fields causes that entanglement to migrate and/or diffuse
between time-bins. This means that even though the entanglement is always fully present, and does not
reduce, its visibility is reduced, and is reduced more for greater mismatches, as can be seen on figure 3.
However, figure 3 also shows that visibility can be recovered using longer averaging intervals; at least up to a
(vg) cut-off when the time difference exceeds the averaging windows.

Note that there is a regime in which long-time detector averaging might instead lead to reduced
entanglement visibility. This is the case where the input pump pulses are longer than their coherence time,
i.e. that they are comparable to an ensemble of dissimilar, but perfectly coherent, shorter pulses with
randomly staggered arrival times. In such a case, if detector averaging is also longer than the coherence
time, the entanglement visibility might be obscured under the additional noise and variation.

7. Pulsed SFWM simulations

Having demonstrated the visibility-reducing effect of dispersion, and the compensating nature of detection
averaging for instructive but artificial material parameters, we now proceed to consider more realistic
situation. Here we standardise on an input 40 ps pump pulse and a 512 ps window divided into 2 ps bins.
Simulation pulse intensities were chosen as low as practicable, given the constraints of computation time
and the requirement for good simulation statistics. Further, the pump–idler pulses were ideally
synchronised as they entered the NL2 stage. However, the signal fields are also mis-timed at the output BS
by δτ s = 20 ps (i.e. ten time bins). This not only mimics imperfect experimental setup, it is also useful in
providing an example where the detector averaging has more to recover. We also used the technique,
described in section 4, to reduce the effect of sampling error—something which would otherwise make
useful positive-P simulations computationally prohibitive or problematic, since statistical fluctuations due
to poor sampling artificially increase the computed visibility.

In figures 4(a)–(f) we show how detected photon numbers and visibilities vary for no interposed
in-interferometer object. To increase the generality of our results, we not only use our standard material
parameters (c) and (f), but also show some for artificially reduced group velocity offsets (a), (d) and
(b), (e). This range of material parameter values emphasises the significant effect of group velocity offsets.
The displacement to negative t of the visibility peak is a result of the group velocity walk-off of the signal
field.

We see that the detected photon rates n decrease at larger group velocity mismatches—this is due to the
increased spreading of the generated fields, and hence less effective nonlinear generation. Despite the
decrease in detected n, we see that the reduction in detector-averaged entanglement visibility is relatively
minor; while in stark contrast, the drop in un-averaged visibility is significant. Thus we see that sufficiently
long averaging interval allows us to recover most of the maximum possible visibility, albeit not all; and as
we would expect the averaging also helps reduce the significant statistical variation visible on the
un-averaged data. Thus figure 4 shows that group velocity mismatches are not as problematic as they might

8
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Figure 4. Pulsed simulations with no object (r = 0) and artificially scaled ((a) and (d) 10%, (b) and (e) 50%) and true (c) and
(f) group velocity offsets. (a), (b) and (c) Detected photon numbers per 2 ps, nA , nB (red and blue); dotted lines are ns1, ns2 for the
pre-BS signal fields; note the change in vertical axis scale. (d), (e) and (f) Detected entanglement visibilities for different time
averaging, at 2 ps per bin. The 1(S) curve on (d) is a (false) visibility based on an assumed detection of the pre-BS signal pulses,
and is non-zero only because of their arrival-time mismatch.

Figure 5. Time-dependent entanglement visibilities for pulsed simulations with 32 bin (64 ps) averaging and a 40 ps mistiming
at the output BS. In (a) we see how the visibility profile changes if the idler synchronisation δτ i (in ps) differs from the ideal
value. Other frames show the effects of varying object properties, i.e. (b) phase (in degrees), (c) reflectivity, and (d) interaction
with a dynamic object as per (8)–(10).

at first appear, since the generated entanglements, however scrambled they might be by the gradual
nonlinear generation and significantly dispersive propagation, can be recovered to a significant extent by
time-averaging at the detector.

9
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In figure 4 the simulations ensured the idler pulse arrived at the NL2 stage in correct synchronization
with the pump pulse. We can see on figure 5(a) that mis-timing the idler pulse arrival results in a gradual
fall off in averaged visibility. This is due to a combination of the pump pulse length (40 ps), the averaging
time (64 ps), and the group velocity spreading (∼80 ps); although we expect this behavior to be typical, and
not specific to these exact parameters.

On figures 5(b) and (c), we introduce passive objects into the simulations that cause either (b) an idler
phase shift, or have (c) a reflectivity that reduces the idler amplitude. In these, and in broad agreement with
the CW case trends shown in figure 2, we see a fall-off of the time-dependent entanglement visibility with
object phase depth φ and object reflectivity r.

Dynamic objects further emphasise the potential role of time-dependence. Figure 5(d) shows recovered
entanglement visibility values for a range of interaction strengths η′. At low η′, idler field excitations are
coupled into the object but not out again, leading to reduced visibility. However, as the η′ increases even
further, those excitations can also start being coupled back out, leading to a partial recovery. This
non-trivial behaviour suggests the possibility of interesting trade-offs between parameter regimes when
considering the imaging of dynamic objects.

8. Conclusion

We have shown how the time-averaging process inherent in slow detector response times enables recovery
of the entanglement necessary QNI. Unexpectedly, this remains true even when significant confounding
effects such as group velocity differences, dispersion, mis-timing of pulse arrivals, or objects interposed in
the idler beam are allowed for. But although such a ‘detector averaging’ argument might sound plausible
enough for very simple scenarios, for descriptions approaching any real-world complexity obtaining any
straightforward theoretical confirmation is unlikely. Accordingly, here we have used numerical simulations
to test both simple CW and complicated pulsed scenarios and can confirm the important role of detector
time averaging. Although one could consider adding additional detail to our model, such as other
experimental noise sources, by including nonlinearity, dispersion, and propagation effects we have
nevertheless already included all the key physical processes.

In particular, group velocity mismatches play a critical role, seeing as they can rapidly de-synchronise
mutually entangled time-slices of the light field. As a result the essential lesson to draw from this work is
clearly visible on figure 3; i.e. that entanglement visibility can be recovered if the detection averaging
timescale is greater than the group velocity walk-off (see figure 3(a)), or greater than the timescale of the
dispersively-induced dephasing (see figure 3(b)). However, as the later results show (see figures 4 and 5), in
more realistic systems the interplay of these effects can give rise to more complicated dependencies,
although the trend—more averaging implies better visibility—remains clear. In contrast to visibilities,
which are a ratio, nonlinear generation efficiencies suffer penalties from the effect of material dispersion
regardless of averaging.

Finally, here we have also introduced a linearly coupled, dynamic object model to act as a starting point
for more modelling of more sophisticated interactions; a feature likely to be important in systems relying on
short pulses, resonant behaviour, and time-domain entanglement.
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Appendix A. Evolution: from density matrix to SDEs

Since to our knowledge the positive-P Fokker–Planck equation for the degenerate-pump FWM interaction
Hamiltonian are not currently in the literature, so we now summarize the derivation. This interaction
Hamiltonian (1) gives a contribution to the density matrix evolution

ρ̇int =
ı

�

[
Ĥint, ρ

]
. (21)
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The expansion of the density matrix in terms of coherent states, albeit for just a single mode, is

ρ =

∫ |α〉
〈
α†∣∣

〈α|α†〉 P(α,α†; t)d2α d2α†. (22)

Using the standard positive-P operator correspondences, we can convert the density matrix dynamics into a
dynamics for the corresponding positive-P distribution function [37–39], which is a function of many
complex coherent state amplitudes. The resulting Fokker–Planck equation for this P(. . . ; t) is

∂tP(. . . ; t)= L intP(. . . ; t). (23)

The derivative operators defining this part of the dynamics for the positive-P distribution P is as follows.
The first two lines result from the first commutator term Ĥintρ, and the last two lines from −ρĤint, are

L int = −χ

(
α†

u +
∂

∂αu

)2

αsαi

+ χ∗αuαu

(
α†

s +
∂

∂αs

)(
α†

i +
∂

∂αi

)

+ χα†
uα

†
u

(
αs +

∂

∂α†
s

)(
αi +

∂

∂α†
i

)

− χ∗
(
αu +

∂

∂α†
u

)2

α†
sα

†
i . (24)

Expanded we have,

− χ

{
α†

uα
†
u + α†

u

∂

∂αu
+

∂

∂αu
α†

u +
∂

∂αu

∂

∂αu

}
αsαi

+ χ∗αuαu

{
α†

sα
†
i + α†

s

∂

∂αi
+

∂

∂αs
α†

i +
∂

∂αs

∂

∂αi

}

+ χα†
uα

†
u

{
αsαi + αs

∂

∂α†
i

+
∂

∂α†
s

αi +
∂

∂α†
s

∂

∂α†
i

}

− χ∗
{
αuαu +

∂

∂α†
u

αu + αu
∂

∂α†
u

+
∂

∂α†
u

∂

∂α†
u

}
α†

sα
†
i . (25)

Now all the terms without derivatives cancel, so that

− χ

{
α†

u

∂

∂αu
+

∂

∂αu
α†

u +
∂

∂αu

∂

∂αu

}
αsαi

+ χ∗αuαu

{
α†

s

∂

∂αi
+

∂

∂αs
α†

i +
∂

∂αs

∂

∂αi

}

+ χα†
uα

†
u

{
αs

∂

∂α†
i

+
∂

∂α†
s

αi +
∂

∂α†
s

∂

∂α†
i

}

− χ∗
{

∂

∂α†
u

αu + αu
∂

∂α†
u

+
∂

∂α†
u

∂

∂α†
u

}
α†

sα
†
i . (26)

Now we organise the terms. Collecting the first derivative terms, which are deterministic ‘drift’ terms,
results in

− ∂

∂αu

[
2χα†

uαsαi

]
− ∂

∂α†
u

[
2χ∗αuα

†
sα

†
i

]

+
∂

∂αs

[
χ∗αuαuα

†
i

]
+

∂

∂α†
s

[
χα†

uα
†
uαi

]

+
∂

∂αi

[
χ∗αuαuα

†
s

]
+

∂

∂α†
i

[
χα†

uα
†
uαs

]
. (27)

These can be immediately converted into SDE drift terms where the leading derivative supplies the ‘which
field’ information and the argument (in square brackets ‘[· · ·]’) supplies the change in that field.

11



New J. Phys. 24 (2022) 103037 P Kinsler et al

Collecting the second derivative terms, which are noise-like diffusion terms, results in

− 1

2

∂

∂αu

∂

∂αu
{2χαsαi} −

1

2

∂

∂α†
u

∂

∂α†
u

{
2χ∗α†

sα
†
i

}

+
1

2

∂

∂αs

∂

∂αi
{2χ∗αuαu}+

1

2

∂

∂α†
s

∂

∂α†
i

{
2χα†

uα
†
u

}
. (28)

These inform us as to the noise terms and their correlations that will appear in a SDE equivalent picture;
the noise amplitudes being the square root of the argument in braces.

These Fokker–Planck equation terms can be converted into temporal SDEs using standard techniques
[37–39], and by then transforming them into a co-moving frame [34], we can arrive at the set of spatially
propagated SDE’s (2)–(7) used in the simulation model. Although reasonable in the case of weak
dispersion, as is the case here, in general the conversion of a material’s dispersive response between the
temporally propagated and spatially propagated domains is not straightforward [48, 49].

Appendix B. Nonlinearity and power

A key feature of the degenerate-pump FWM nonlinear interaction used in our simulations is that it
produces pairs of entangled signal and idler fields (photons). It shares this property with the more
commonly used second order parametric nonlinearity [39] (usually denoted χ(2)), which generates the same
kind of entangled pairs but from single pump photons, not pairs. Although this difference is not trivial, the
SDE equations for a χ(2) nonlinearity are similar in form, although with no quantum noise term applied to
the pump field. To test what differences might appear between the two models, some simulations were also
done with this χ(2) model and system parameters rescaled to match the nonlinear effects; the results were
remarkably similar in character, indicating that our conclusions are not specific to the FWM model we
present here. In both cases we take the usual approach in that the nonlinear response is treated as
instantaneous. This is a reasonable approximation since typical nonlinear response times in dielectrics are
of the order of femtoseconds or less [50].

In these pair-producing nonlinear interactions, higher pump powers lead to larger amplitudes for the
signal and idler fields. Even though our hybrid simulation strategy described in an earlier appendix
considerably reduces sampling error, it nevertheless cannot overcome sampling difficulties if the fields
produced are too weak. Thus, as stated in the text, we have to run the simulations at a much higher pump
power than present in our nominal experimental target [29], just so as to get good simulation statistics
(i.e. at least ∼106 higher). This means that we rely on the scaling behaviour of the FWM terms in (2) to (5),
the weakness of the nonlinearity, and the simulation’s lack of any SPM term to nevertheless still give
representative results.

However, it is important to remember that we are not here attempting some exact simulation of a QNI
experiment based on Pearce et al [29], but instead we are using it as a representative scheme to test the
generation and recovery of entanglement information under the influence of material dispersion. As a
result, the specific pump power used is not of direct relevance to our conclusions regarding the recovery of
useful entanglement information as a result of the time-averaging at the detector.

Appendix C. A toy model of entanglement recovery

A toy model of correlation recovery by averaging is possible, although perhaps it is too simple: in our QNI
description, correlated quantities are complex valued, accumulated gradually, and undergo phase shifts
before being overlaid on one another again and again, all with differing time shifts. In this toy model, the
quantities are real valued and we impose only a simple time shift.

Generate a time-series of uncorrelated, zero-average, random numbers A, and make a copy C, but with a
time index offset so that for all indices j, we have

Aj = Cj+1. (29)

There are no correlations between the time-synchronised elements since
〈

AjCj

〉
=

〈
AjAj+1

〉
= 0, and on

this basis the two time-series’ appear uncorrelated. However, now take simple time-averages of A and C, to
make two new series B and D, where

Bj =
1

2

(
Aj + Aj+1

)
(30)
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and Dj =
1

2

(
Cj + Cj+1

)
. (31)

But since we also know that D can be expressed in terms of A, we can also write

Dj =
1

2

(
Aj−1 + Aj

)
(32)

we see that between the time-synchronised elements of B and D there are correlations, i.e.

〈
BjDj

〉
=

1

4

〈
A2

j

〉
. (33)

Thus we see that time averaging provides us visible time-synchronised correlations that can be tracked back
to A and C, despite there being none visible without it.
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[18] Marcikic I, de Riedmatten H, Tittel W, Zbinden H, Legŕe M and Gisin N 2004 Distribution of time-bin entangled qubits over 50

km of optical fiber Phys. Rev. Lett. 93 180502
[19] Inagaki T, Matsuda N, Tadanaga O, Asobe M and Takesue H 2013 Entanglement distribution over 300 km of fiber Opt. Express 21

23241
[20] Yu Y et al 2020 Entanglement of two quantum memories via fibres over dozens of kilometres Nature 578 240
[21] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Fundamental limits of repeaterless quantum communications Nat.

Commun. 8 15043
[22] Zwerger M, Pirker A, Dunjko V, Briegel H J and Dür W 2018 Long-range big quantum-data transmission Phys. Rev. Lett. 120

030503
[23] Khatri S, Matyas C T, Siddiqui A U and Dowling J P 2019 Practical figures of merit and thresholds for entanglement distribution

in quantum networks Phys. Rev. Res. 1 023032
[24] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Optical imaging by means of two-photon quantum entanglement

Phys. Rev. A 52 R3429
[25] Erkmen B I and Shapiro J H 2010 Ghost imaging: from quantum to classical to computational Adv. Opt. Photon. 2 405
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