18 research outputs found

    Separation of K+ and Bi3+ displacements in a Pb-free, monoclinic piezoelectric at the morphotropic phase boundary

    Get PDF
    The best piezoelectric properties of any perovskite oxide known are found in the solid solution of the relaxor Pb(Mg1/3Nb2/3)O3 and ferroelectric PbTiO3. Despite its impressive properties, this system has limited analogy. We present the compositional exploration of the Pb-free analogue (1-x)(K1/2Bi1/2)(Mg1/3Nb2/3)O3-x(K1/2Bi1/2)TiO3 (KBMN-KBT). We locate the morphotropic phase boundary between x = 0.86 and 0.88 changing from Cm to Pm symmetry and the optimally performing composition at x = 0.88. We report a piezoelectric figure of merit (d33*) of 192 pm V−1 from strain measurements. Diffraction methods reveal disordered displacements of K+ and Bi3+ which persist from the KBMN endmember through multiple changes in symmetry. Rearrangement of the Bi3+ displacements along the uncommon [011]c direction drives the physical response. Ferroelectric, dielectric, and piezoresponse force microscopy are used to study the progression of physical properties through the MPB and attribute the mechanism to a polarization rotation. Taking account for local, short-range, and average structural features yield a balanced perspective on the structure and properties of this system, isolating the driving force within this system to the Bi3+ bonding configuration. This work yields a strong analogy to the Pb-based analogue, and provides strategies for further optimization

    Crystal structure, electronic, and magnetic properties of the bilayered rhodium oxide Sr3Rh2O7

    Get PDF
    The bilayered rhodium oxide Sr3Rh2O7 was synthesized by high-pressure and high-temperature heating techniques. The single-phase polycrystalline sample of Sr3Rh2O7 was characterized by measurements of magnetic susceptibility, electrical resistivity, specific heat, and thermopower. The structural characteristics were investigated by powder neutron diffraction study. The rhodium oxide Sr3Rh2O7 [Bbcb, a = 5.4744(8) A, b = 5.4716(9) A, c = 20.875(2) A] is isostructural to the metamagnetic metal Sr3Ru2O7, with five 4d electrons per Rh, which is electronically equivalent to the hypothetic bilayered ruthenium oxide, where one electron per Ru is doped into the Ru-327 unit. The present data show the rhodium oxide Sr3Rh2O7 to be metallic with enhanced paramagnetism, similar to Sr3Ru2O7. However, neither manifest contributions from spin fluctuations nor any traces of a metamagnetic transition were found within the studied range from 2 K to 390 K below 70 kOe.Comment: To be published in PR

    Solution Structure of the Squash Aspartic Acid Proteinase Inhibitor (SQAPI) and Mutational Analysis of Pepsin Inhibition

    No full text
    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel β-sheet gripping an α-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting β-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S′ side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp32–Asp215 diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin
    corecore