336 research outputs found

    Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering

    Get PDF
    Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1 mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    A High-Throughput Screen Identifies a New Natural Product with Broad-Spectrum Antibacterial Activity

    Get PDF
    Due to the inexorable invasion of our hospitals and communities by drug-resistant bacteria, there is a pressing need for novel antibacterial agents. Here we report the development of a sensitive and robust but low-tech and inexpensive high-throughput metabolic screen for novel antibiotics. This screen is based on a colorimetric assay of pH that identifies inhibitors of bacterial sugar fermentation. After validation of the method, we screened over 39,000 crude extracts derived from organisms that grow in the diverse ecosystems of Costa Rica and identified 49 with reproducible antibacterial effects. An extract from an endophytic fungus was further characterized, and this led to the discovery of three novel natural products. One of these, which we named mirandamycin, has broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae, methicillin-resistant Staphylococcus aureus, and Mycobacterium tuberculosis. This demonstrates the power of simple high throughput screens for rapid identification of new antibacterial agents from environmental samples

    Microtermolides A and B from Termite-Associated Streptomyces sp. and Structural Revision of Vinylamycin

    Get PDF
    Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re-examination of the structure originally proposed for vinylamycin (3). Based on a comparison of predicted and experimental 1^1H and 13^{13}C NMR chemical shifts, we propose that vinylamycin’s structure be revised from 3 to 4

    Tomorrow’s Digital Worker : A Critical Review and Agenda for Building Digital Competency Models

    Get PDF
    In competency management studies, scholars call for the importance of digital savviness to hire, train, and develop new digital workers. Yet, the knowledge about the development of such a competence is still scarce. For this endeavor, we followed a systematic literature review to identify a sample of 103 published scientific articles and book chapters dealing with the development and implementation of competency tools in the past 10 years. To our surprise, our review suggests that the landscape of competency tools is surprisingly obsolete and that contemporary requirements of digitization have not yet been incorporated into updated usable competency tools. Through this review our hope is to provide competency managers and researchers with a framework to advance and upgrade their competency tools to address the gap between existing know how and the needed expertise of the digital world.© 2020 Springer. This is a post-peer-review, pre-copyedit version of an article published in Advances in Human Factors, Business Management and Leadership Proceedings of the AHFE 2020 Virtual Conferences on Human Factors, Business Management and Society, and Human Factors in Management and Leadership, July 16-20, 2020, USA. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-50791-6_14fi=vertaisarvioitu|en=peerReviewed

    A call for using natural compounds in the development of new antimalarial treatments – an introduction

    Get PDF
    Natural compounds, mostly from plants, have been the mainstay of traditional medicine for thousands of years. They have also been the source of lead compounds for modern medicine, but the extent of mining of natural compounds for such leads decreased during the second half of the 20th century. The advantage of natural compounds for the development of drugs derives from their innate affinity for biological receptors. Natural compounds have provided the best anti-malarials known to date. Recent surveys have identified many extracts of various organisms (mostly plants) as having antiplasmodial activity. Huge libraries of fractionated natural compounds have been screened with impressive hit rates. Importantly, many cases are known where the crude biological extract is more efficient pharmacologically than the most active purified compound from this extract. This could be due to synergism with other compounds present in the extract, that as such have no pharmacological activity. Indeed, such compounds are best screened by cell-based assay where all potential targets in the cell are probed and possible synergies identified. Traditional medicine uses crude extracts. These have often been shown to provide many concoctions that deal better with the overall disease condition than with the causative agent itself. Traditional medicines are used by ~80 % of Africans as a first response to ailment. Many of the traditional medicines have demonstrable anti-plasmodial activities. It is suggested that rigorous evaluation of traditional medicines involving controlled clinical trials in parallel with agronomical development for more reproducible levels of active compounds could improve the availability of drugs at an acceptable cost and a source of income in malaria endemic countries

    Sex-Specific Growth and Reproductive Dynamics of Red Drum in the Northern Gulf of Mexico

    Get PDF
    The Red Drum Sciaenops ocellatus stock is heavily targeted in the Gulf of Mexico (GOM) by recreational fishers and supports a small commercial fishery in Mississippi. Despite their popularity, little recent work has been done to describe their life history. In this work, we describe sex‐specific growth and reproductive dynamics of Red Drum collected from the northern GOM from September 2016 through October 2017. We evaluated seven candidate growth models and found that the three‐parameter von Bertalanffy growth function (VBGF) was the best candidate length‐at‐age model. No significant difference in growth between sexes was observed with the three‐parameter VBGF, despite the female‐specific curve having a larger mean asymptotic length than the male‐specific curve. All seven candidate growth models predicted similar mean length‐at‐age estimates, and four of them exhibited significant differences in sex‐specific mean length at age, with females reaching a larger length at age than males after age 5. There was no significant difference between the sex‐specific weight‐at‐length relationships. Red Drum are batch spawners that spawn in northern GOM coastal waters during August and September. We estimated 3.7 d between spawns and 10.5 spawning events per female in 2017. Nearly 20% of fish collected during the spawning season were sexually mature but reproductively inactive, indicating the possibility of skipped spawning. The age at 50% maturity was around 3 years (length at 50% maturity = 670 mm TL) in both sexes, but fish were not spawning capable until age 4.5 (703 mm TL) in males and age 5.8 (840 mm TL) in females. Furthermore, elevated gonadosomatic indices were not observed until around age 5–6. The updated life history information presented in this work helps to address current data limitations and provides critical information for future assessments of Red Drum stocks in the northern GOM
    corecore